All Downloads are FREE. Search and download functionalities are using the official Maven repository.

ucar.nc2.dataset.transform.Geostationary Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (c) 1998-2020 University Corporation for Atmospheric Research/Unidata
 * See LICENSE for license information.
 */

package ucar.nc2.dataset.transform;

import ucar.nc2.AttributeContainer;
import ucar.nc2.constants.CF;
import ucar.nc2.dataset.ProjectionCT;
import ucar.nc2.dataset.TransformType;
import ucar.nc2.units.SimpleUnit;
import ucar.unidata.geoloc.ProjectionImpl;

/**
 * Describe:
 * http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/cf-conventions.html#_geostationary_projection
 * Accepted for CF-1.7
 *
 * grid_mapping_name = geostationary
 * Map parameters:
 * latitude_of_projection_origin
 * longitude_of_projection_origin
 * perspective_point_height
 * semi_minor_axis
 * semi_major_axis
 * inverse_flattening
 * sweep_angle_axis
 * fixed_angle_axis
 * 
 * Map coordinates:
 * The x (abscissa) and y (ordinate) rectangular coordinates are identified by the standard_name attribute value
 * projection_x_coordinate and projection_y_coordinate
 * respectively. In the case of this projection, the projection coordinates in this projection are directly related to
 * the scanning angle of the satellite instrument,
 * and their units are radians.
 * 
 * Notes:
 * 
 * The algorithm for computing the mapping may be found at
 * http://www.eumetsat.int/idcplg?IdcService=GET_FILE&dDocName=PDF_CGMS_03&RevisionSelectionMethod=LatestReleased.
 * This document assumes the point of observation is directly over the equator, and that the sweep_angle_axis is y.
 * 
 * Notes on using the PROJ.4 software packages for computing the mapping may be found at
 * http://trac.osgeo.org/proj/wiki/proj%3Dgeos and
 * http://remotesensing.org/geotiff/proj_list/geos.html .
 * 
 * The "perspective_point_height" is the distance to the surface of the ellipsoid. Adding the earth major axis gives the
 * distance from the centre of the earth.
 * 
 * The "sweep_angle_axis" attribute indicates which axis the instrument sweeps. The value = "y" corresponds to the
 * spin-stabilized Meteosat satellites,
 * the value = "x" to the GOES-R satellite.
 * 
 * The "fixed_angle_axis" attribute indicates which axis the instrument is fixed. The values are opposite to
 * "sweep_angle_axis". Only one of those two attributes are
 * mandatory.
 * 
 * latitude_of_projection_origin will be taken as zero (at the Equator).
 * 
 * inverse_flattening may be specified independent of the semi_minor/major axes (GRS80). If left unspecified it will be
 * computed
 * from semi_minor/major_axis values.
 *
 * @author caron
 * @since 12/5/13
 */
public class Geostationary extends AbstractTransformBuilder implements HorizTransformBuilderIF {
  private static final org.slf4j.Logger logger = org.slf4j.LoggerFactory.getLogger(Geostationary.class);

  private static double defaultScaleFactor = -1.0;

  public String getTransformName() {
    return CF.GEOSTATIONARY;
  }

  public TransformType getTransformType() {
    return TransformType.Projection;
  }

  public ProjectionCT makeCoordinateTransform(AttributeContainer ctv, String geoCoordinateUnits) {
    readStandardParams(ctv, geoCoordinateUnits);

    double subLonDegrees = readAttributeDouble(ctv, CF.LONGITUDE_OF_PROJECTION_ORIGIN, Double.NaN);
    if (Double.isNaN(subLonDegrees)) {
      throw new IllegalArgumentException("Must specify " + CF.LONGITUDE_OF_PROJECTION_ORIGIN);
    }
    double perspective_point_height = readAttributeDouble(ctv, CF.PERSPECTIVE_POINT_HEIGHT, Double.NaN);
    if (Double.isNaN(perspective_point_height)) {
      throw new IllegalArgumentException("Must specify " + CF.PERSPECTIVE_POINT_HEIGHT);
    }

    double semi_major_axis = readAttributeDouble(ctv, CF.SEMI_MAJOR_AXIS, Double.NaN);
    if (Double.isNaN(semi_major_axis)) {
      throw new IllegalArgumentException("Must specify " + CF.SEMI_MAJOR_AXIS);
    }

    double semi_minor_axis = readAttributeDouble(ctv, CF.SEMI_MINOR_AXIS, Double.NaN);
    double inv_flattening = readAttributeDouble(ctv, CF.INVERSE_FLATTENING, Double.NaN);

    if (Double.isNaN(semi_minor_axis) && Double.isNaN(inv_flattening)) {
      throw new IllegalArgumentException("Must specify " + CF.SEMI_MINOR_AXIS + " and/or " + CF.INVERSE_FLATTENING);
    } else if (Double.isNaN(semi_minor_axis)) {
      double flattening = 1. / inv_flattening;
      semi_minor_axis = semi_major_axis * (1. - flattening);
    } else if (Double.isNaN(inv_flattening)) {
      if (semi_minor_axis != semi_major_axis) {
        double flattening = (semi_major_axis - semi_minor_axis) / semi_major_axis;
        inv_flattening = 1. / flattening;
      } else {
        // Do nothing. The calculations results in inv_flattening = 1. / 0., and it is already
        // set to Double.NaN.
      }
    } else {
      // Both semi_minor_axis and inv_flattening are specified.
      assert (!Double.isNaN(semi_minor_axis)) && (!Double.isNaN(inv_flattening));
      // If we were obsessive, we could do a sanity test to verify the values are consistent.
    }

    String sweep_angle = ctv.findAttributeString(CF.SWEEP_ANGLE_AXIS, null);
    String fixed_angle = ctv.findAttributeString(CF.FIXED_ANGLE_AXIS, null);

    if (sweep_angle == null && fixed_angle == null) {
      throw new IllegalArgumentException("Must specify " + CF.SWEEP_ANGLE_AXIS + " or " + CF.FIXED_ANGLE_AXIS);
    }
    boolean isSweepX;
    if (sweep_angle != null) {
      isSweepX = sweep_angle.equals("x");
    } else {
      isSweepX = fixed_angle.equals("y");
    }

    ProjectionImpl proj = new ucar.unidata.geoloc.projection.sat.Geostationary(subLonDegrees, perspective_point_height,
        semi_minor_axis, semi_major_axis, inv_flattening, isSweepX);

    return new ProjectionCT(ctv.getName(), "FGDC", proj);
  }

}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy