ucar.nc2.dt.radial.Dorade2RadialAdapter Maven / Gradle / Ivy
The newest version!
/*
* Copyright (c) 1998-2018 John Caron and University Corporation for Atmospheric Research/Unidata
* See LICENSE for license information.
*/
// $Id:Dorade2Dataset.java 51 2006-07-12 17:13:13Z caron $
package ucar.nc2.dt.radial;
import ucar.nc2.dataset.*;
import ucar.nc2.constants.*;
import ucar.nc2.dt.*;
import ucar.nc2.ft.FeatureDataset;
import ucar.nc2.units.DateUnit;
import ucar.nc2.VariableSimpleIF;
import ucar.nc2.Variable;
import ucar.ma2.*;
import java.io.IOException;
import java.util.*;
import ucar.unidata.geoloc.EarthLocation;
/**
* Make a Dorade 2 NetcdfDataset into a RadialDataset.
*
* @author yuan
*/
public class Dorade2RadialAdapter extends AbstractRadialAdapter {
private NetcdfDataset ncd;
float[] elev, aziv, disv, lonv, altv, latv;
double[] timv;
float ranv, cellv, angv, nyqv, rangv, contv, rgainv, bwidthv;
/////////////////////////////////////////////////
public Object isMine(FeatureType wantFeatureType, NetcdfDataset ncd, Formatter errlog) {
String convention = ncd.getRootGroup().findAttributeString("Conventions", null);
if (_Coordinate.Convention.equals(convention)) {
String format = ncd.getRootGroup().findAttributeString("Format", null);
if ("Unidata/netCDF/Dorade".equals(format))
return this;
}
return null;
}
public FeatureDataset open(FeatureType ftype, NetcdfDataset ncd, Object analysis, ucar.nc2.util.CancelTask task,
Formatter errlog) {
return new Dorade2RadialAdapter(ncd);
}
public FeatureType getScientificDataType() {
return FeatureType.RADIAL;
}
// needed for FeatureDatasetFactory
public Dorade2RadialAdapter() {}
/**
* Constructor.
*
* @param ds must be from dorade IOSP
*/
public Dorade2RadialAdapter(NetcdfDataset ds) {
super(ds);
this.ncd = ds;
desc = "dorade radar dataset";
// EarthLocation y = getEarthLocation() ;
try {
elev = (float[]) ncd.findVariable("elevation").read().get1DJavaArray(Float.TYPE);
aziv = (float[]) ncd.findVariable("azimuth").read().get1DJavaArray(Float.TYPE);
altv = (float[]) ncd.findVariable("altitudes_1").read().get1DJavaArray(Float.TYPE);
lonv = (float[]) ncd.findVariable("longitudes_1").read().get1DJavaArray(Float.TYPE);
latv = (float[]) ncd.findVariable("latitudes_1").read().get1DJavaArray(Float.TYPE);
disv = (float[]) ncd.findVariable("distance_1").read().get1DJavaArray(Float.TYPE);
timv = (double[]) ncd.findVariable("rays_time").read().get1DJavaArray(Double.TYPE);
angv = ncd.findVariable("Fixed_Angle").readScalarFloat();
nyqv = ncd.findVariable("Nyquist_Velocity").readScalarFloat();
rangv = ncd.findVariable("Unambiguous_Range").readScalarFloat();
contv = ncd.findVariable("Radar_Constant").readScalarFloat();
rgainv = ncd.findVariable("rcvr_gain").readScalarFloat();
// bwidthv = ncd.findVariable("bm_width").readScalarFloat();
setStartDate();
setEndDate();
} catch (IOException e) {
e.printStackTrace();
}
}
public String getRadarID() {
return ncd.findGlobalAttribute("radar_name").getStringValue();
}
public String getRadarName() {
return "Dorade Radar";
}
public String getDataFormat() {
return "DORADE";
}
public ucar.unidata.geoloc.EarthLocation getCommonOrigin() {
if (isStationary())
return EarthLocation.create(latv[0], lonv[0], elev[0]);
return null;
}
public boolean isStationary() {
String t = ncd.findGlobalAttribute("IsStationary").getStringValue();
return t.equals("1"); // if t == "1" return true
}
// public boolean isRadial() {
// return true;
// }
public boolean isVolume() {
return false;
}
protected void setEarthLocation() {
if (isStationary())
origin = EarthLocation.create(latv[0], lonv[0], elev[0]);
origin = null;
}
protected void addRadialVariable(NetcdfDataset nds, Variable var) {
RadialVariable rsvar = null;
int rnk = var.getRank();
if (rnk == 2) {
rsvar = makeRadialVariable(nds, var);
}
if (rsvar != null)
dataVariables.add(rsvar);
}
protected RadialVariable makeRadialVariable(NetcdfDataset nds, Variable v0) {
return new Dorade2Variable(nds, v0);
}
protected void setStartDate() {
Date da = new Date((long) timv[0]);
String start_datetime = da.toString();
if (start_datetime != null)
startDate = da;
else
parseInfo.append("*** start_datetime not Found\n");
}
protected void setEndDate() {
Date da = new Date((long) timv[timv.length - 1]);
String end_datetime = da.toString();
if (end_datetime != null)
endDate = da;
else
parseInfo.append("*** end_datetime not Found\n");
}
protected void setTimeUnits() throws Exception {
for (CoordinateAxis axis : ncd.getCoordinateAxes()) {
if (axis.getAxisType() == AxisType.Time) {
String units = axis.getUnitsString();
dateUnits = new DateUnit(units);
return;
}
}
parseInfo.append("*** Time Units not Found\n");
}
public List getAttributes() {
return ncd.getRootGroup().getAttributes();
}
public ucar.nc2.units.DateUnit getTimeUnits() {
return dateUnits;
}
public void getTimeUnits(ucar.nc2.units.DateUnit dateUnits) {
this.dateUnits = dateUnits;
}
public void clearDatasetMemory() {
for (VariableSimpleIF rvar : getDataVariables()) {
RadialVariable radVar = (RadialVariable) rvar;
radVar.clearVariableMemory();
}
}
private class Dorade2Variable extends MyRadialVariableAdapter implements RadialDatasetSweep.RadialVariable {
ArrayList sweeps;
float azi;
public int getNumSweeps() {
return 1;
}
public Sweep getSweep(int nsw) {
return (Sweep) sweeps.get(nsw);
}
private Dorade2Variable(NetcdfDataset nds, Variable v0) {
super(v0.getShortName(), v0);
sweeps = new ArrayList<>();
int[] shape = v0.getShape();
int count = v0.getRank() - 1;
int ngates = shape[count];
count--;
int nrays = shape[count];
sweeps.add(new Dorade2Sweep(v0, 0, nrays, ngates));
}
public String toString() {
return name;
}
public float[] readAllData() throws java.io.IOException {
Array allData;
Sweep spn = sweeps.get(0);
Variable v = spn.getsweepVar();
try {
allData = v.read();
} catch (IOException e) {
throw new IOException(e.getMessage());
}
return (float[]) allData.get1DJavaArray(Float.TYPE);
}
public void clearVariableMemory() {
// doing nothing
}
//////////////////////////////////////////////////////////////////////
private class Dorade2Sweep implements RadialDatasetSweep.Sweep {
int nrays, ngates;
double meanElevation = Double.NaN;
Variable sweepVar;
Dorade2Sweep(Variable v, int sweepno, int rays, int gates) {
this.sweepVar = v;
this.nrays = rays;
this.ngates = gates;
}
public Variable getsweepVar() {
return sweepVar;
}
public RadialDatasetSweep.Type getType() {
return null;
}
public float getLon(int ray) {
return lonv[ray];
}
public int getGateNumber() {
return ngates;
}
public int getRadialNumber() {
return nrays;
}
public int getSweepIndex() {
return 0;
}
public float[] readData() throws java.io.IOException {
return readAllData();
}
public float[] readData(int ray) throws java.io.IOException {
Array rayData;
int[] shape = sweepVar.getShape();
int[] origi = new int[sweepVar.getRank()];
shape[0] = 1;
origi[0] = ray;
try {
rayData = sweepVar.read(origi, shape);
} catch (ucar.ma2.InvalidRangeException e) {
throw new IOException(e.getMessage());
}
return (float[]) rayData.get1DJavaArray(Float.TYPE);
}
public float getBeamWidth() { // degrees
try {
bwidthv = ncd.findVariable("bm_width").readScalarFloat();
} catch (java.io.IOException e) {
e.printStackTrace();
}
return bwidthv;
}
public float getNyquistFrequency() {
return 0.0f;
}
public float getRangeToFirstGate() { // meters
try {
ranv = ncd.findVariable("Range_to_First_Cell").readScalarFloat();
} catch (java.io.IOException e) {
e.printStackTrace();
}
return ranv;
}
public float getGateSize() { // meters
try {
cellv = ncd.findVariable("Cell_Spacing").readScalarFloat();
} catch (java.io.IOException e) {
e.printStackTrace();
}
return cellv;
}
// coordinates of the radial data, relative to radial origin.
public float getMeanElevation() {// degrees from horisontal earth tangent, towards zenith
int[] shapeRadial = new int[1];
shapeRadial[0] = nrays;
Array data = Array.factory(DataType.FLOAT, shapeRadial, elev);
meanElevation = MAMath.sumDouble(data) / data.getSize();
return (float) meanElevation;
}
public float getElevation(int ray) {// degrees from horisontal earth tangent, towards zenith
return elev[ray];
}
public float[] getElevation() {// degrees from horisontal earth tangent, towards zenith
return elev;
}
public float getAzimuth(int ray) { // degrees clockwise from true North
return aziv[ray];
}
public float[] getAzimuth() { // degrees clockwise from true North
return aziv;
}
public float getTime() {
return (float) timv[0];
}
public float getTime(int ray) {
return (float) timv[ray];
}
/**
* Location of the origin of the radial
*/
public ucar.unidata.geoloc.EarthLocation getOrigin(int ray) {
return EarthLocation.create(latv[ray], lonv[ray], altv[ray]);
}
public float getMeanAzimuth() {
if (getType() != null)
return azi;
return 0f;
}
public Date getStartingTime() {
return startDate;
}
public Date getEndingTime() {
return endDate;
}
public void clearSweepMemory() {
// doing nothing for dorade adapter
}
} // Dorade2Sweep class
} // Dorade2Variable
} // Dorade2Dataset
© 2015 - 2025 Weber Informatics LLC | Privacy Policy