ucar.nc2.dt.radial.UF2RadialAdapter Maven / Gradle / Ivy
The newest version!
/*
* Copyright (c) 1998-2018 John Caron and University Corporation for Atmospheric Research/Unidata
* See LICENSE for license information.
*/
package ucar.nc2.dt.radial;
import ucar.nc2.*;
import ucar.nc2.dataset.*;
import ucar.nc2.constants.*;
import ucar.nc2.dt.*;
import ucar.nc2.ft.FeatureDataset;
import ucar.nc2.time.CalendarDateUnit;
import ucar.nc2.units.DateUnit;
import ucar.nc2.units.DateFormatter;
import ucar.ma2.*;
import ucar.unidata.geoloc.EarthLocation;
import ucar.unidata.geoloc.LatLonPoint;
import ucar.unidata.geoloc.LatLonRect;
import ucar.unidata.geoloc.Earth;
import java.io.IOException;
import java.util.*;
public class UF2RadialAdapter extends AbstractRadialAdapter {
private NetcdfDataset ds;
double latv, lonv, elev;
DateFormatter formatter = new DateFormatter();
/////////////////////////////////////////////////
public Object isMine(FeatureType wantFeatureType, NetcdfDataset ncd, Formatter errlog) {
String convention = ncd.getRootGroup().findAttributeString("Conventions", null);
if (_Coordinate.Convention.equals(convention)) {
String format = ncd.getRootGroup().findAttributeString("Format", null);
if ("UNIVERSALFORMAT".equals(format))
return this;
}
return null;
}
public FeatureDataset open(FeatureType ftype, NetcdfDataset ncd, Object analysis, ucar.nc2.util.CancelTask task,
Formatter errlog) {
return new UF2RadialAdapter(ncd);
}
public FeatureType getScientificDataType() {
return FeatureType.RADIAL;
}
// needed for FeatureDatasetFactory
public UF2RadialAdapter() {}
/**
* Constructor.
*
* @param ds must be from nexrad2 IOSP
*/
public UF2RadialAdapter(NetcdfDataset ds) {
super(ds);
this.ds = ds;
desc = "UF 2 radar dataset";
setEarthLocation();
try {
setTimeUnits();
} catch (Exception e) {
throw new RuntimeException(e);
}
setStartDate();
setEndDate();
setBoundingBox();
}
protected void setBoundingBox() {
LatLonRect bb;
if (origin == null)
return;
double dLat = Math.toDegrees(getMaximumRadialDist() / Earth.WGS84_EARTH_RADIUS_METERS);
double latRadians = Math.toRadians(origin.getLatitude());
double dLon = dLat * Math.cos(latRadians);
double lat1 = origin.getLatitude() - dLat / 2;
double lon1 = origin.getLongitude() - dLon / 2;
bb = new LatLonRect(LatLonPoint.create(lat1, lon1), dLat, dLon);
boundingBox = bb;
}
double getMaximumRadialDist() {
double maxdist = 0.0;
for (VariableSimpleIF dataVariable : getDataVariables()) {
RadialVariable rv = (RadialVariable) dataVariable;
Sweep sp = rv.getSweep(0);
double dist = sp.getGateNumber() * sp.getGateSize();
if (dist > maxdist) {
maxdist = dist;
}
}
return maxdist;
}
protected void setEarthLocation() {
Attribute ga = ds.findGlobalAttribute("StationLatitude");
if (ga != null)
latv = ga.getNumericValue().doubleValue();
else
latv = 0.0;
ga = ds.findGlobalAttribute("StationLongitude");
if (ga != null)
lonv = ga.getNumericValue().doubleValue();
else
lonv = 0.0;
ga = ds.findGlobalAttribute("StationElevationInMeters");
if (ga != null)
elev = ga.getNumericValue().doubleValue();
else
elev = 0.0;
origin = EarthLocation.create(latv, lonv, elev);
}
public ucar.unidata.geoloc.EarthLocation getCommonOrigin() {
return origin;
}
public String getRadarID() {
Attribute ga = ds.findGlobalAttribute("instrument_name");
if (ga != null)
return ga.getStringValue();
else
return "XXXX";
}
public String getRadarName() {
Attribute ga = ds.findGlobalAttribute("site_name");
if (ga != null)
return ga.getStringValue();
else
return "Unknown Station";
}
public String getDataFormat() {
return "Universal Format";
}
public boolean isVolume() {
return true;
}
public boolean isStationary() {
return true;
}
protected void setTimeUnits() throws Exception {
for (CoordinateAxis axis : ds.getCoordinateAxes()) {
if (axis.getAxisType() == AxisType.Time) {
String units = axis.getUnitsString();
dateUnits = new DateUnit(units);
calDateUnits = CalendarDateUnit.of(null, units);
return;
}
}
parseInfo.append("*** Time Units not Found\n");
}
protected void setStartDate() {
String start_datetime = ds.getRootGroup().findAttributeString("time_coverage_start", null);
if (start_datetime != null)
startDate = formatter.getISODate(start_datetime);
else
parseInfo.append("*** start_datetime not Found\n");
}
protected void setEndDate() {
String end_datetime = ds.getRootGroup().findAttributeString("time_coverage_end", null);
if (end_datetime != null)
endDate = formatter.getISODate(end_datetime);
else
parseInfo.append("*** end_datetime not Found\n");
}
public void clearDatasetMemory() {
for (VariableSimpleIF rvar : getDataVariables()) {
RadialVariable radVar = (RadialVariable) rvar;
radVar.clearVariableMemory();
}
}
protected void addRadialVariable(NetcdfDataset nds, Variable var) {
RadialDatasetSweep.RadialVariable rsvar = null;
int rnk = var.getRank();
if (rnk == 3) {
rsvar = makeRadialVariable(nds, var);
}
if (rsvar != null)
dataVariables.add(rsvar);
}
protected RadialDatasetSweep.RadialVariable makeRadialVariable(NetcdfDataset nds, Variable v0) {
// this function is null in level 2
return new UF2Variable(nds, v0);
}
public String getInfo() {
String sbuff = "UF2Dataset\n" + super.getDetailInfo() + "\n\n" + parseInfo;
return sbuff;
}
private class UF2Variable extends AbstractRadialAdapter.MyRadialVariableAdapter
implements RadialDatasetSweep.RadialVariable {
int nsweeps;
ArrayList sweeps;
private UF2Variable(NetcdfDataset nds, Variable v0) {
super(v0.getShortName(), v0);
sweeps = new ArrayList<>();
int[] shape = v0.getShape();
int count = v0.getRank() - 1;
int ngates = shape[count];
count--;
int nrays = shape[count];
count--;
nsweeps = shape[count];
for (int i = 0; i < nsweeps; i++)
sweeps.add(new UF2Sweep(v0, i, nrays, ngates));
}
public String toString() {
return name;
}
public int getNumSweeps() {
return nsweeps;
}
public RadialDatasetSweep.Sweep getSweep(int sweepNo) {
return sweeps.get(sweepNo);
}
public int getNumRadials() {
return 0;
}
// a 3D array nsweep * nradials * ngates
// if high resolution data, it will be transfered to the same dimension
public float[] readAllData() throws IOException {
Array allData;
RadialDatasetSweep.Sweep spn = sweeps.get(sweeps.size() - 1);
Variable v = spn.getsweepVar();
try {
allData = v.read();
} catch (IOException e) {
throw new IOException(e.getMessage());
}
return (float[]) allData.get1DJavaArray(float.class);
}
public void clearVariableMemory() {}
//////////////////////////////////////////////////////////////////////
// Checking all azi to make sure there is no missing data at sweep
// level, since the coordinate is 1D at this level, this checking also
// remove those missing radials within a sweep.
private class UF2Sweep implements RadialDatasetSweep.Sweep {
double meanElevation = Double.NaN;
double meanAzimuth = Double.NaN;
int nrays, ngates;
int sweepno;
Variable sweepVar;
String abbrev;
UF2Sweep(Variable v, int sweepno, int rays, int gates) {
this.sweepVar = v;
this.sweepno = sweepno;
this.nrays = rays;
this.ngates = gates;
abbrev = sweepVar.attributes().findAttributeString("abbrev", null);
}
public Variable getsweepVar() {
return sweepVar;
}
/* read 2d sweep data nradials * ngates */
public float[] readData() throws java.io.IOException {
return sweepData(sweepno);
}
/* read from the radial variable */
private float[] sweepData(int swpNumber) throws java.io.IOException {
int[] shape = sweepVar.getShape();
int[] origin = new int[shape.length];
// init section
origin[0] = swpNumber;
shape[0] = 1;
try {
Array sweepTmp = sweepVar.read(origin, shape).reduce();
return (float[]) sweepTmp.get1DJavaArray(Float.TYPE);
} catch (ucar.ma2.InvalidRangeException e) {
throw new IOException(e);
}
}
/* read 1d data ngates */
public float[] readData(int ray) throws java.io.IOException {
return rayData(sweepno, ray);
}
/* read the radial data from the radial variable */
public float[] rayData(int swpNumber, int ray) throws java.io.IOException {
int[] shape = sweepVar.getShape();
int[] origin = new int[shape.length];
// init section
origin[0] = swpNumber;
origin[1] = ray; // shape[1] - numRadial + ray ;
shape[0] = 1;
shape[1] = 1;
try {
Array sweepTmp = sweepVar.read(origin, shape).reduce();
return (float[]) sweepTmp.get1DJavaArray(Float.TYPE);
} catch (ucar.ma2.InvalidRangeException e) {
throw new IOException(e);
}
}
public void setMeanElevation() {
String eleName;
eleName = "elevation" + abbrev;
setMeanEle(eleName, sweepno);
}
private void setMeanEle(String elevName, int swpNumber) {
try {
float[] eleData = getEle(elevName, swpNumber);
float sum = 0;
int sumSize = 0;
for (float v : eleData)
if (!Float.isNaN(v)) {
sum += v;
sumSize++;
}
if (sumSize > 0)
meanElevation = sum / sumSize;
} catch (IOException e) {
e.printStackTrace();
}
}
public float getMeanElevation() {
if (Double.isNaN(meanElevation))
setMeanElevation();
return (float) meanElevation;
}
public double meanDouble(Array a) {
double sum = 0;
int size = 0;
IndexIterator iterA = a.getIndexIterator();
while (iterA.hasNext()) {
double s = iterA.getDoubleNext();
if (!Double.isNaN(s)) {
sum += s;
size++;
}
}
if (size > 0)
return sum / size;
else
return Double.POSITIVE_INFINITY;
}
public int getGateNumber() {
return ngates;
}
public int getRadialNumber() {
return nrays;
}
public RadialDatasetSweep.Type getType() {
return null;
}
public ucar.unidata.geoloc.EarthLocation getOrigin(int ray) {
return origin;
}
public Date getStartingTime() {
return startDate;
}
public Date getEndingTime() {
return endDate;
}
public int getSweepIndex() {
return sweepno;
}
public void setMeanAzimuth() {
String aziName = "azimuth" + abbrev;
setMeanAzi(aziName, sweepno);
}
private void setMeanAzi(String aziName, int swpNumber) {
if (getType() != null) {
try {
Array data = ds.findVariable(aziName).read();
int[] aziOrigin = new int[2];
aziOrigin[0] = swpNumber;
aziOrigin[1] = 0; // shape[1] - getRadialNumber();
int[] aziShape = {1, getRadialNumber()};
Array aziData = data.section(aziOrigin, aziShape);
meanAzimuth = MAMath.sumDouble(aziData) / aziData.getSize();
} catch (IOException e) {
e.printStackTrace();
meanAzimuth = 0.0;
} catch (ucar.ma2.InvalidRangeException e) {
e.printStackTrace();
}
} else {
meanAzimuth = 0.0;
}
}
public float getMeanAzimuth() {
if (Double.isNaN(meanAzimuth))
setMeanAzimuth();
return (float) meanAzimuth;
}
public boolean isConic() {
return true;
}
public float getElevation(int ray) throws IOException {
String eleName = "elevation" + abbrev;
return getEle(eleName, sweepno, ray);
}
public float getEle(String elevName, int swpNumber, int ray) throws IOException {
float[] eleData = getEle(elevName, swpNumber);
return eleData[ray];
}
public float[] getElevation() throws IOException {
String eleName = "elevation" + abbrev;
return getEle(eleName, sweepno);
}
public float[] getEle(String elevName, int swpNumber) throws IOException {
try {
Array eleData = ds.findVariable(elevName).read();
int[] eleOrigin = new int[2];
eleOrigin[0] = swpNumber;
eleOrigin[1] = 0;
int[] eleShape = {1, getRadialNumber()};
eleData = eleData.section(eleOrigin, eleShape);
return (float[]) eleData.get1DJavaArray(Float.TYPE);
} catch (ucar.ma2.InvalidRangeException e) {
throw new IOException(e);
}
}
public float[] getAzimuth() throws IOException {
String aziName = "azimuth" + abbrev;
return getAzi(aziName, sweepno);
}
public float[] getAzi(String aziName, int swpNumber) throws IOException {
try {
Array aziData = ds.findVariable(aziName).read();
int[] aziOrigin = new int[2];
aziOrigin[0] = swpNumber;
aziOrigin[1] = 0; // shape[1] - getRadialNumber();
int[] aziShape = {1, getRadialNumber()};
aziData = aziData.section(aziOrigin, aziShape);
return (float[]) aziData.get1DJavaArray(Float.TYPE);
} catch (ucar.ma2.InvalidRangeException e) {
throw new IOException(e);
}
}
public float getAzimuth(int ray) throws IOException {
String aziName = "azimuth" + abbrev;
return getAzi(aziName, sweepno, ray);
}
public float getAzi(String aziName, int swpNumber, int ray) throws IOException {
float[] aziData = getAzi(aziName, swpNumber);
return aziData[ray];
}
public float getRadialDistance(int gate) throws IOException {
String disName = "distance" + abbrev;
return getRadialDist(disName, gate);
}
public float getRadialDist(String dName, int gate) throws IOException {
Array data = ds.findVariable(dName).read();
Index index = data.getIndex();
return data.getFloat(index.set(gate));
}
public float getTime(int ray) throws IOException {
String tName = "time" + abbrev;
return getT(tName, sweepno, ray);
}
public float getT(String tName, int swpNumber, int ray) throws IOException {
Array timeData = ds.findVariable(tName).read();
Index timeIndex = timeData.getIndex();
return timeData.getFloat(timeIndex.set(swpNumber, ray));
}
public float getBeamWidth() {
return 0.95f; // degrees, info from Chris Burkhart
}
public float getNyquistFrequency() {
return 0; // LOOK this may be radial specific
}
public float getRangeToFirstGate() {
try {
return getRadialDistance(0);
} catch (IOException e) {
e.printStackTrace();
return 0.0f;
}
}
public float getGateSize() {
try {
return getRadialDistance(1) - getRadialDistance(0);
} catch (IOException e) {
e.printStackTrace();
return 0.0f;
}
}
public boolean isGateSizeConstant() {
return true;
}
public void clearSweepMemory() {
}
} // LevelII2Sweep class
} // LevelII2Variable
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy