All Downloads are FREE. Search and download functionalities are using the official Maven repository.

ucar.nc2.dt.radial.UF2RadialAdapter Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (c) 1998-2018 John Caron and University Corporation for Atmospheric Research/Unidata
 * See LICENSE for license information.
 */
package ucar.nc2.dt.radial;

import ucar.nc2.*;
import ucar.nc2.dataset.*;
import ucar.nc2.constants.*;
import ucar.nc2.dt.*;
import ucar.nc2.ft.FeatureDataset;
import ucar.nc2.time.CalendarDateUnit;
import ucar.nc2.units.DateUnit;
import ucar.nc2.units.DateFormatter;
import ucar.ma2.*;
import ucar.unidata.geoloc.EarthLocation;
import ucar.unidata.geoloc.LatLonPoint;
import ucar.unidata.geoloc.LatLonRect;
import ucar.unidata.geoloc.Earth;
import java.io.IOException;
import java.util.*;


public class UF2RadialAdapter extends AbstractRadialAdapter {
  private NetcdfDataset ds;
  double latv, lonv, elev;
  DateFormatter formatter = new DateFormatter();

  /////////////////////////////////////////////////
  public Object isMine(FeatureType wantFeatureType, NetcdfDataset ncd, Formatter errlog) {
    String convention = ncd.getRootGroup().findAttributeString("Conventions", null);
    if (_Coordinate.Convention.equals(convention)) {
      String format = ncd.getRootGroup().findAttributeString("Format", null);
      if ("UNIVERSALFORMAT".equals(format))
        return this;
    }
    return null;
  }

  public FeatureDataset open(FeatureType ftype, NetcdfDataset ncd, Object analysis, ucar.nc2.util.CancelTask task,
      Formatter errlog) {
    return new UF2RadialAdapter(ncd);
  }

  public FeatureType getScientificDataType() {
    return FeatureType.RADIAL;
  }

  // needed for FeatureDatasetFactory
  public UF2RadialAdapter() {}

  /**
   * Constructor.
   *
   * @param ds must be from nexrad2 IOSP
   */
  public UF2RadialAdapter(NetcdfDataset ds) {
    super(ds);
    this.ds = ds;
    desc = "UF 2 radar dataset";

    setEarthLocation();
    try {
      setTimeUnits();
    } catch (Exception e) {
      throw new RuntimeException(e);
    }
    setStartDate();
    setEndDate();
    setBoundingBox();
  }

  protected void setBoundingBox() {
    LatLonRect bb;

    if (origin == null)
      return;

    double dLat = Math.toDegrees(getMaximumRadialDist() / Earth.WGS84_EARTH_RADIUS_METERS);
    double latRadians = Math.toRadians(origin.getLatitude());
    double dLon = dLat * Math.cos(latRadians);

    double lat1 = origin.getLatitude() - dLat / 2;
    double lon1 = origin.getLongitude() - dLon / 2;
    bb = new LatLonRect(LatLonPoint.create(lat1, lon1), dLat, dLon);

    boundingBox = bb;
  }

  double getMaximumRadialDist() {
    double maxdist = 0.0;

    for (VariableSimpleIF dataVariable : getDataVariables()) {
      RadialVariable rv = (RadialVariable) dataVariable;
      Sweep sp = rv.getSweep(0);
      double dist = sp.getGateNumber() * sp.getGateSize();

      if (dist > maxdist) {
        maxdist = dist;
      }
    }

    return maxdist;
  }

  protected void setEarthLocation() {
    Attribute ga = ds.findGlobalAttribute("StationLatitude");
    if (ga != null)
      latv = ga.getNumericValue().doubleValue();
    else
      latv = 0.0;

    ga = ds.findGlobalAttribute("StationLongitude");
    if (ga != null)
      lonv = ga.getNumericValue().doubleValue();
    else
      lonv = 0.0;

    ga = ds.findGlobalAttribute("StationElevationInMeters");
    if (ga != null)
      elev = ga.getNumericValue().doubleValue();
    else
      elev = 0.0;

    origin = EarthLocation.create(latv, lonv, elev);
  }

  public ucar.unidata.geoloc.EarthLocation getCommonOrigin() {
    return origin;
  }

  public String getRadarID() {
    Attribute ga = ds.findGlobalAttribute("instrument_name");
    if (ga != null)
      return ga.getStringValue();
    else
      return "XXXX";
  }

  public String getRadarName() {
    Attribute ga = ds.findGlobalAttribute("site_name");
    if (ga != null)
      return ga.getStringValue();
    else
      return "Unknown Station";
  }

  public String getDataFormat() {
    return "Universal Format";
  }

  public boolean isVolume() {
    return true;
  }

  public boolean isStationary() {
    return true;
  }

  protected void setTimeUnits() throws Exception {
    for (CoordinateAxis axis : ds.getCoordinateAxes()) {
      if (axis.getAxisType() == AxisType.Time) {
        String units = axis.getUnitsString();
        dateUnits = new DateUnit(units);
        calDateUnits = CalendarDateUnit.of(null, units);
        return;
      }
    }
    parseInfo.append("*** Time Units not Found\n");
  }

  protected void setStartDate() {
    String start_datetime = ds.getRootGroup().findAttributeString("time_coverage_start", null);
    if (start_datetime != null)
      startDate = formatter.getISODate(start_datetime);
    else
      parseInfo.append("*** start_datetime not Found\n");
  }

  protected void setEndDate() {
    String end_datetime = ds.getRootGroup().findAttributeString("time_coverage_end", null);
    if (end_datetime != null)
      endDate = formatter.getISODate(end_datetime);
    else
      parseInfo.append("*** end_datetime not Found\n");
  }

  public void clearDatasetMemory() {
    for (VariableSimpleIF rvar : getDataVariables()) {
      RadialVariable radVar = (RadialVariable) rvar;
      radVar.clearVariableMemory();
    }
  }

  protected void addRadialVariable(NetcdfDataset nds, Variable var) {
    RadialDatasetSweep.RadialVariable rsvar = null;
    int rnk = var.getRank();

    if (rnk == 3) {
      rsvar = makeRadialVariable(nds, var);
    }

    if (rsvar != null)
      dataVariables.add(rsvar);
  }

  protected RadialDatasetSweep.RadialVariable makeRadialVariable(NetcdfDataset nds, Variable v0) {
    // this function is null in level 2
    return new UF2Variable(nds, v0);
  }

  public String getInfo() {
    String sbuff = "UF2Dataset\n" + super.getDetailInfo() + "\n\n" + parseInfo;
    return sbuff;
  }

  private class UF2Variable extends AbstractRadialAdapter.MyRadialVariableAdapter
      implements RadialDatasetSweep.RadialVariable {
    int nsweeps;

    ArrayList sweeps;

    private UF2Variable(NetcdfDataset nds, Variable v0) {
      super(v0.getShortName(), v0);

      sweeps = new ArrayList<>();

      int[] shape = v0.getShape();
      int count = v0.getRank() - 1;

      int ngates = shape[count];
      count--;
      int nrays = shape[count];
      count--;
      nsweeps = shape[count];

      for (int i = 0; i < nsweeps; i++)
        sweeps.add(new UF2Sweep(v0, i, nrays, ngates));

    }

    public String toString() {
      return name;
    }

    public int getNumSweeps() {
      return nsweeps;
    }

    public RadialDatasetSweep.Sweep getSweep(int sweepNo) {
      return sweeps.get(sweepNo);
    }

    public int getNumRadials() {
      return 0;
    }

    // a 3D array nsweep * nradials * ngates
    // if high resolution data, it will be transfered to the same dimension
    public float[] readAllData() throws IOException {
      Array allData;
      RadialDatasetSweep.Sweep spn = sweeps.get(sweeps.size() - 1);
      Variable v = spn.getsweepVar();
      try {
        allData = v.read();
      } catch (IOException e) {
        throw new IOException(e.getMessage());
      }
      return (float[]) allData.get1DJavaArray(float.class);
    }

    public void clearVariableMemory() {}


    //////////////////////////////////////////////////////////////////////
    // Checking all azi to make sure there is no missing data at sweep
    // level, since the coordinate is 1D at this level, this checking also
    // remove those missing radials within a sweep.

    private class UF2Sweep implements RadialDatasetSweep.Sweep {
      double meanElevation = Double.NaN;
      double meanAzimuth = Double.NaN;
      int nrays, ngates;
      int sweepno;
      Variable sweepVar;
      String abbrev;

      UF2Sweep(Variable v, int sweepno, int rays, int gates) {
        this.sweepVar = v;
        this.sweepno = sweepno;
        this.nrays = rays;
        this.ngates = gates;
        abbrev = sweepVar.attributes().findAttributeString("abbrev", null);
      }

      public Variable getsweepVar() {
        return sweepVar;
      }

      /* read 2d sweep data nradials * ngates */
      public float[] readData() throws java.io.IOException {
        return sweepData(sweepno);
      }

      /* read from the radial variable */
      private float[] sweepData(int swpNumber) throws java.io.IOException {
        int[] shape = sweepVar.getShape();
        int[] origin = new int[shape.length];

        // init section
        origin[0] = swpNumber;
        shape[0] = 1;

        try {
          Array sweepTmp = sweepVar.read(origin, shape).reduce();
          return (float[]) sweepTmp.get1DJavaArray(Float.TYPE);
        } catch (ucar.ma2.InvalidRangeException e) {
          throw new IOException(e);
        }
      }

      /* read 1d data ngates */
      public float[] readData(int ray) throws java.io.IOException {
        return rayData(sweepno, ray);
      }

      /* read the radial data from the radial variable */
      public float[] rayData(int swpNumber, int ray) throws java.io.IOException {
        int[] shape = sweepVar.getShape();
        int[] origin = new int[shape.length];

        // init section
        origin[0] = swpNumber;
        origin[1] = ray; // shape[1] - numRadial + ray ;
        shape[0] = 1;
        shape[1] = 1;

        try {
          Array sweepTmp = sweepVar.read(origin, shape).reduce();
          return (float[]) sweepTmp.get1DJavaArray(Float.TYPE);
        } catch (ucar.ma2.InvalidRangeException e) {
          throw new IOException(e);
        }
      }

      public void setMeanElevation() {
        String eleName;

        eleName = "elevation" + abbrev;
        setMeanEle(eleName, sweepno);
      }

      private void setMeanEle(String elevName, int swpNumber) {
        try {
          float[] eleData = getEle(elevName, swpNumber);

          float sum = 0;
          int sumSize = 0;
          for (float v : eleData)
            if (!Float.isNaN(v)) {
              sum += v;
              sumSize++;
            }

          if (sumSize > 0)
            meanElevation = sum / sumSize;
        } catch (IOException e) {
          e.printStackTrace();
        }
      }

      public float getMeanElevation() {
        if (Double.isNaN(meanElevation))
          setMeanElevation();
        return (float) meanElevation;
      }

      public double meanDouble(Array a) {
        double sum = 0;
        int size = 0;

        IndexIterator iterA = a.getIndexIterator();
        while (iterA.hasNext()) {
          double s = iterA.getDoubleNext();

          if (!Double.isNaN(s)) {
            sum += s;
            size++;
          }
        }
        if (size > 0)
          return sum / size;
        else
          return Double.POSITIVE_INFINITY;
      }

      public int getGateNumber() {
        return ngates;
      }

      public int getRadialNumber() {
        return nrays;
      }


      public RadialDatasetSweep.Type getType() {
        return null;
      }

      public ucar.unidata.geoloc.EarthLocation getOrigin(int ray) {
        return origin;
      }

      public Date getStartingTime() {
        return startDate;
      }

      public Date getEndingTime() {
        return endDate;
      }

      public int getSweepIndex() {
        return sweepno;
      }


      public void setMeanAzimuth() {
        String aziName = "azimuth" + abbrev;
        setMeanAzi(aziName, sweepno);
      }

      private void setMeanAzi(String aziName, int swpNumber) {
        if (getType() != null) {
          try {
            Array data = ds.findVariable(aziName).read();
            int[] aziOrigin = new int[2];
            aziOrigin[0] = swpNumber;
            aziOrigin[1] = 0; // shape[1] - getRadialNumber();
            int[] aziShape = {1, getRadialNumber()};
            Array aziData = data.section(aziOrigin, aziShape);
            meanAzimuth = MAMath.sumDouble(aziData) / aziData.getSize();
          } catch (IOException e) {
            e.printStackTrace();
            meanAzimuth = 0.0;
          } catch (ucar.ma2.InvalidRangeException e) {
            e.printStackTrace();
          }

        } else {
          meanAzimuth = 0.0;
        }
      }

      public float getMeanAzimuth() {
        if (Double.isNaN(meanAzimuth))
          setMeanAzimuth();
        return (float) meanAzimuth;
      }

      public boolean isConic() {
        return true;
      }

      public float getElevation(int ray) throws IOException {
        String eleName = "elevation" + abbrev;
        return getEle(eleName, sweepno, ray);

      }

      public float getEle(String elevName, int swpNumber, int ray) throws IOException {
        float[] eleData = getEle(elevName, swpNumber);
        return eleData[ray];
      }

      public float[] getElevation() throws IOException {
        String eleName = "elevation" + abbrev;
        return getEle(eleName, sweepno);
      }

      public float[] getEle(String elevName, int swpNumber) throws IOException {
        try {
          Array eleData = ds.findVariable(elevName).read();
          int[] eleOrigin = new int[2];
          eleOrigin[0] = swpNumber;
          eleOrigin[1] = 0;
          int[] eleShape = {1, getRadialNumber()};
          eleData = eleData.section(eleOrigin, eleShape);
          return (float[]) eleData.get1DJavaArray(Float.TYPE);
        } catch (ucar.ma2.InvalidRangeException e) {
          throw new IOException(e);
        }
      }

      public float[] getAzimuth() throws IOException {
        String aziName = "azimuth" + abbrev;
        return getAzi(aziName, sweepno);
      }

      public float[] getAzi(String aziName, int swpNumber) throws IOException {
        try {
          Array aziData = ds.findVariable(aziName).read();
          int[] aziOrigin = new int[2];
          aziOrigin[0] = swpNumber;
          aziOrigin[1] = 0; // shape[1] - getRadialNumber();
          int[] aziShape = {1, getRadialNumber()};
          aziData = aziData.section(aziOrigin, aziShape);
          return (float[]) aziData.get1DJavaArray(Float.TYPE);
        } catch (ucar.ma2.InvalidRangeException e) {
          throw new IOException(e);
        }
      }

      public float getAzimuth(int ray) throws IOException {
        String aziName = "azimuth" + abbrev;
        return getAzi(aziName, sweepno, ray);
      }

      public float getAzi(String aziName, int swpNumber, int ray) throws IOException {
        float[] aziData = getAzi(aziName, swpNumber);
        return aziData[ray];
      }

      public float getRadialDistance(int gate) throws IOException {
        String disName = "distance" + abbrev;
        return getRadialDist(disName, gate);

      }

      public float getRadialDist(String dName, int gate) throws IOException {
        Array data = ds.findVariable(dName).read();
        Index index = data.getIndex();
        return data.getFloat(index.set(gate));
      }

      public float getTime(int ray) throws IOException {
        String tName = "time" + abbrev;
        return getT(tName, sweepno, ray);
      }

      public float getT(String tName, int swpNumber, int ray) throws IOException {
        Array timeData = ds.findVariable(tName).read();
        Index timeIndex = timeData.getIndex();
        return timeData.getFloat(timeIndex.set(swpNumber, ray));
      }

      public float getBeamWidth() {
        return 0.95f; // degrees, info from Chris Burkhart
      }

      public float getNyquistFrequency() {
        return 0; // LOOK this may be radial specific
      }

      public float getRangeToFirstGate() {
        try {
          return getRadialDistance(0);
        } catch (IOException e) {
          e.printStackTrace();
          return 0.0f;
        }
      }

      public float getGateSize() {
        try {
          return getRadialDistance(1) - getRadialDistance(0);
        } catch (IOException e) {
          e.printStackTrace();
          return 0.0f;
        }
      }

      public boolean isGateSizeConstant() {
        return true;
      }

      public void clearSweepMemory() {

      }
    } // LevelII2Sweep class

  } // LevelII2Variable

}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy