ucar.unidata.geoloc.projection.VerticalPerspectiveView Maven / Gradle / Ivy
The newest version!
/*
* Copyright (c) 1998-2018 University Corporation for Atmospheric Research/Unidata
* See LICENSE for license information.
*/
package ucar.unidata.geoloc.projection;
import ucar.nc2.constants.CDM;
import ucar.nc2.constants.CF;
import ucar.unidata.geoloc.*;
import ucar.unidata.geoloc.projection.sat.BoundingBoxHelper;
/**
* Vertical Perspective Projection, spherical earth.
*
* See John Snyder, Map Projections used by the USGS, Bulletin 1532,
* 2nd edition (1983), p 176
*
* @author Unidata Development Team
* @see Projection
* @see ProjectionImpl
*/
public class VerticalPerspectiveView extends ProjectionImpl {
private double lat0, lon0; // center lat/lon in radians
private final double false_east, false_north;
private double R, H;
// constants from Snyder's equations
private double P, lon0Degrees;
private double cosLat0, sinLat0;
private double maxR; // "map limit" circle of this radius from the origin, p 173
// values passed in through the constructor
// need for constructCopy
private double _lat0, _lon0;
@Override
public ProjectionImpl constructCopy() {
ProjectionImpl result =
new VerticalPerspectiveView(getOriginLat(), getOriginLon(), R, getHeight(), false_east, false_north);
result.setDefaultMapArea(defaultMapArea);
result.setName(name);
return result;
}
/**
* Constructor with default parameters
*/
public VerticalPerspectiveView() {
this(0.0, 0.0, EARTH_RADIUS, 35800);
}
/**
* Construct a VerticalPerspectiveView Projection
*
* @param lat0 lat origin of the coord. system on the projection plane
* @param lon0 lon origin of the coord. system on the projection plane
* @param earthRadius radius of the earth (km)
* @param distance height above the earth (km)
*/
public VerticalPerspectiveView(double lat0, double lon0, double earthRadius, double distance) {
this(lat0, lon0, earthRadius, distance, 0, 0);
}
/**
* Construct a VerticalPerspectiveView Projection
*
* @param lat0 lat origin of the coord. system on the projection plane
* @param lon0 lon origin of the coord. system on the projection plane
* @param earthRadius radius of the earth (km)
* @param distance height above the earth (km)
* @param false_easting easting offset (km)
* @param false_northing northing offset (km)
*/
public VerticalPerspectiveView(double lat0, double lon0, double earthRadius, double distance, double false_easting,
double false_northing) {
super("VerticalPerspectiveView", false);
this.lat0 = Math.toRadians(lat0);
this.lon0 = Math.toRadians(lon0);
R = earthRadius;
H = distance;
false_east = false_easting;
false_north = false_northing;
precalculate();
addParameter(CF.GRID_MAPPING_NAME, CF.VERTICAL_PERSPECTIVE);
addParameter(CF.LATITUDE_OF_PROJECTION_ORIGIN, lat0);
addParameter(CF.LONGITUDE_OF_PROJECTION_ORIGIN, lon0);
addParameter(CF.EARTH_RADIUS, earthRadius * 1000);
addParameter(CF.PERSPECTIVE_POINT_HEIGHT, distance * 1000);
if (false_easting != 0 || false_northing != 0) {
addParameter(CF.FALSE_EASTING, false_easting);
addParameter(CF.FALSE_NORTHING, false_northing);
addParameter(CDM.UNITS, "km");
}
}
/**
* Precalculate some stuff
*/
private void precalculate() {
sinLat0 = Math.sin(lat0);
cosLat0 = Math.cos(lat0);
lon0Degrees = Math.toDegrees(lon0);
P = 1.0 + H / R;
// "map limit" circle of this radius from the origin, p 173
maxR = .99 * R * Math.sqrt((P - 1) / (P + 1));
}
@Override
public boolean equals(Object o) {
if (this == o)
return true;
if (o == null || getClass() != o.getClass())
return false;
VerticalPerspectiveView that = (VerticalPerspectiveView) o;
if (Double.compare(that.H, H) != 0)
return false;
if (Double.compare(that.R, R) != 0)
return false;
if (Double.compare(that.false_east, false_east) != 0)
return false;
if (Double.compare(that.false_north, false_north) != 0)
return false;
if (Double.compare(that.lat0, lat0) != 0)
return false;
if (Double.compare(that.lon0, lon0) != 0)
return false;
if ((defaultMapArea == null) != (that.defaultMapArea == null))
return false; // common case is that these are null
return defaultMapArea == null || that.defaultMapArea.equals(defaultMapArea);
}
@Override
public int hashCode() {
int result;
long temp;
temp = lat0 != 0.0d ? Double.doubleToLongBits(lat0) : 0L;
result = (int) (temp ^ (temp >>> 32));
temp = lon0 != 0.0d ? Double.doubleToLongBits(lon0) : 0L;
result = 31 * result + (int) (temp ^ (temp >>> 32));
temp = false_east != 0.0d ? Double.doubleToLongBits(false_east) : 0L;
result = 31 * result + (int) (temp ^ (temp >>> 32));
temp = false_north != 0.0d ? Double.doubleToLongBits(false_north) : 0L;
result = 31 * result + (int) (temp ^ (temp >>> 32));
temp = R != 0.0d ? Double.doubleToLongBits(R) : 0L;
result = 31 * result + (int) (temp ^ (temp >>> 32));
temp = H != 0.0d ? Double.doubleToLongBits(H) : 0L;
result = 31 * result + (int) (temp ^ (temp >>> 32));
return result;
}
// bean properties
/**
* Get the height above the earth
*
* @return the height above the earth
*/
public double getHeight() {
return H;
}
/**
* Get the origin longitude in degrees
*
* @return the origin longitude.
*/
public double getOriginLon() {
return _lon0;
}
/**
* Get the origin latitude in degrees
*
* @return the origin latitude.
*/
public double getOriginLat() {
return _lat0;
}
public double getP() {
return P;
}
//////////////////////////////////////////////
// setters for IDV serialization - do not use except for object creating
/**
* Set the origin longitude.
*
* @param lon the origin longitude.
*/
@Deprecated
public void setOriginLon(double lon) {
_lon0 = lon;
lon0 = Math.toRadians(lon);
precalculate();
}
/**
* Set the height above the earth
*
* @param height height above the earth
*/
@Deprecated
public void setHeight(double height) {
H = height;
precalculate();
}
/**
* Set the origin latitude.
*
* @param lat the origin latitude.
*/
@Deprecated
public void setOriginLat(double lat) {
_lat0 = lat0;
lat0 = Math.toRadians(lat);
precalculate();
}
/**
* Get the label to be used in the gui for this type of projection
*
* @return Type label
*/
public String getProjectionTypeLabel() {
return "VerticalPerspectiveView";
}
/**
* Create a String of the parameters.
*
* @return a String of the parameters
*/
public String paramsToString() {
return toString();
}
@Override
public String toString() {
return "VerticalPerspectiveView{" + "lat0=" + lat0 + ", lon0=" + lon0 + ", false_east=" + false_east
+ ", false_north=" + false_north + ", R=" + R + ", H=" + H + ", P=" + P + '}';
}
/**
* This returns true when the line between pt1 and pt2 crosses the seam.
* When the cone is flattened, the "seam" is lon0 +- 180.
*
* @param pt1 point 1
* @param pt2 point 2
* @return true when the line between pt1 and pt2 crosses the seam.
*/
public boolean crossSeam(ProjectionPoint pt1, ProjectionPoint pt2) {
// either point is infinite
if (LatLonPoints.isInfinite(pt1) || LatLonPoints.isInfinite(pt2)) {
return true;
}
// opposite signed X values, larger then 5000 km
return (pt1.getX() * pt2.getX() < 0) && (Math.abs(pt1.getX() - pt2.getX()) > 5000.0);
}
public ProjectionPoint latLonToProj(LatLonPoint latLon, ProjectionPointImpl result) {
double toX, toY;
double fromLat = latLon.getLatitude();
double fromLon = latLon.getLongitude();
fromLat = Math.toRadians(fromLat);
double lonDiff = Math.toRadians(LatLonPointImpl.lonNormal(fromLon - lon0Degrees));
double cosc = sinLat0 * Math.sin(fromLat) + cosLat0 * Math.cos(fromLat) * Math.cos(lonDiff);
double ksp = (P - 1.0) / (P - cosc);
if (cosc < 1.0 / P) {
toX = Double.POSITIVE_INFINITY;
toY = Double.POSITIVE_INFINITY;
} else {
toX = false_east + R * ksp * Math.cos(fromLat) * Math.sin(lonDiff);
toY = false_north + R * ksp * (cosLat0 * Math.sin(fromLat) - sinLat0 * Math.cos(fromLat) * Math.cos(lonDiff));
}
result.setLocation(toX, toY);
return result;
}
public LatLonPoint projToLatLon(ProjectionPoint world, LatLonPointImpl result) {
double toLat, toLon;
double fromX = world.getX();
double fromY = world.getY();
fromX = fromX - false_east;
fromY = fromY - false_north;
double rho = Math.sqrt(fromX * fromX + fromY * fromY);
double r = rho / R;
double con = P - 1.0;
double com = P + 1.0;
double c = Math.asin((P - Math.sqrt(1.0 - (r * r * com) / con)) / (con / r + r / con));
toLon = lon0;
double temp = 0;
if (Math.abs(rho) > TOLERANCE) {
toLat = Math.asin(Math.cos(c) * sinLat0 + (fromY * Math.sin(c) * cosLat0 / rho));
if (Math.abs(lat0 - Math.PI / 4.0) > TOLERANCE) { // not 90 or -90
temp = rho * cosLat0 * Math.cos(c) - fromY * sinLat0 * Math.sin(c);
toLon = lon0 + Math.atan(fromX * Math.sin(c) / temp);
} else if (Double.compare(lat0, Math.PI / 4.0) == 0) {
toLon = lon0 + Math.atan(fromX / -fromY);
temp = -fromY;
} else {
toLon = lon0 + Math.atan(fromX / fromY);
temp = fromY;
}
} else {
toLat = lat0;
}
toLat = Math.toDegrees(toLat);
toLon = Math.toDegrees(toLon);
if (temp < 0) {
toLon += 180;
}
toLon = LatLonPoints.lonNormal(toLon);
result.setLatitude(toLat);
result.setLongitude(toLon);
return result;
}
/**
* Convert lat/lon coordinates to projection coordinates.
*
* @param from array of lat/lon coordinates: from[2][n],
* where from[0][i], from[1][i] is the (lat,lon)
* coordinate of the ith point
* @param to resulting array of projection coordinates,
* where to[0][i], to[1][i] is the (x,y) coordinate
* of the ith point
* @param latIndex index of latitude in "from"
* @param lonIndex index of longitude in "from"
* @return the "to" array.
*/
public float[][] latLonToProj(float[][] from, float[][] to, int latIndex, int lonIndex) {
int cnt = from[0].length;
float[] fromLatA = from[latIndex];
float[] fromLonA = from[lonIndex];
float[] resultXA = to[INDEX_X];
float[] resultYA = to[INDEX_Y];
double toX, toY;
for (int i = 0; i < cnt; i++) {
double fromLat = fromLatA[i];
double fromLon = fromLonA[i];
fromLat = Math.toRadians(fromLat);
double lonDiff = Math.toRadians(LatLonPointImpl.lonNormal(fromLon - lon0Degrees));
double cosc = sinLat0 * Math.sin(fromLat) + cosLat0 * Math.cos(fromLat) * Math.cos(lonDiff);
double ksp = (P - 1.0) / (P - cosc);
if (cosc < 1.0 / P) {
toX = Double.POSITIVE_INFINITY;
toY = Double.POSITIVE_INFINITY;
} else {
toX = false_east + R * ksp * Math.cos(fromLat) * Math.sin(lonDiff);
toY = false_north + R * ksp * (cosLat0 * Math.sin(fromLat) - sinLat0 * Math.cos(fromLat) * Math.cos(lonDiff));
}
resultXA[i] = (float) toX;
resultYA[i] = (float) toY;
}
return to;
}
/**
* Convert lat/lon coordinates to projection coordinates.
*
* @param from array of lat/lon coordinates: from[2][n], where
* (from[0][i], from[1][i]) is the (lat,lon) coordinate
* of the ith point
* @param to resulting array of projection coordinates: to[2][n]
* where (to[0][i], to[1][i]) is the (x,y) coordinate
* of the ith point
* @return the "to" array
*/
public float[][] projToLatLon(float[][] from, float[][] to) {
int cnt = from[0].length;
float[] fromXA = from[INDEX_X];
float[] fromYA = from[INDEX_Y];
float[] toLatA = to[INDEX_LAT];
float[] toLonA = to[INDEX_LON];
double toLat, toLon;
for (int i = 0; i < cnt; i++) {
double fromX = fromXA[i];
double fromY = fromYA[i];
fromX = fromX - false_east;
fromY = fromY - false_north;
double rho = Math.sqrt(fromX * fromX + fromY * fromY);
double r = rho / R;
double con = P - 1.0;
double com = P + 1.0;
double c = Math.asin((P - Math.sqrt(1.0 - (r * r * com) / con)) / (con / r + r / con));
toLon = lon0;
double temp = 0;
if (Math.abs(rho) > TOLERANCE) {
toLat = Math.asin(Math.cos(c) * sinLat0 + (fromY * Math.sin(c) * cosLat0 / rho));
if (Math.abs(lat0 - Math.PI / 4.0) > TOLERANCE) { // not 90 or -90
temp = rho * cosLat0 * Math.cos(c) - fromY * sinLat0 * Math.sin(c);
toLon = lon0 + Math.atan(fromX * Math.sin(c) / temp);
} else if (Double.compare(lat0, Math.PI / 4.0) == 0) {
toLon = lon0 + Math.atan(fromX / -fromY);
temp = -fromY;
} else {
toLon = lon0 + Math.atan(fromX / fromY);
temp = fromY;
}
} else {
toLat = lat0;
}
toLat = Math.toDegrees(toLat);
toLon = Math.toDegrees(toLon);
if (temp < 0) {
toLon += 180;
}
toLon = LatLonPoints.lonNormal(toLon);
toLatA[i] = (float) toLat;
toLonA[i] = (float) toLon;
}
return to;
}
/**
* Convert lat/lon coordinates to projection coordinates.
*
* @param from array of lat/lon coordinates: from[2][n],
* where from[0][i], from[1][i] is the (lat,lon)
* coordinate of the ith point
* @param to resulting array of projection coordinates,
* where to[0][i], to[1][i] is the (x,y) coordinate
* of the ith point
* @param latIndex index of latitude in "from"
* @param lonIndex index of longitude in "from"
* @return the "to" array.
*/
public double[][] latLonToProj(double[][] from, double[][] to, int latIndex, int lonIndex) {
int cnt = from[0].length;
double[] fromLatA = from[latIndex];
double[] fromLonA = from[lonIndex];
double[] resultXA = to[INDEX_X];
double[] resultYA = to[INDEX_Y];
double toX, toY;
for (int i = 0; i < cnt; i++) {
double fromLat = fromLatA[i];
double fromLon = fromLonA[i];
fromLat = Math.toRadians(fromLat);
double lonDiff = Math.toRadians(LatLonPointImpl.lonNormal(fromLon - lon0Degrees));
double cosc = sinLat0 * Math.sin(fromLat) + cosLat0 * Math.cos(fromLat) * Math.cos(lonDiff);
double ksp = (P - 1.0) / (P - cosc);
if (cosc < 1.0 / P) {
toX = Double.POSITIVE_INFINITY;
toY = Double.POSITIVE_INFINITY;
} else {
toX = false_east + R * ksp * Math.cos(fromLat) * Math.sin(lonDiff);
toY = false_north + R * ksp * (cosLat0 * Math.sin(fromLat) - sinLat0 * Math.cos(fromLat) * Math.cos(lonDiff));
}
resultXA[i] = toX;
resultYA[i] = toY;
}
return to;
}
/**
* Convert lat/lon coordinates to projection coordinates.
*
* @param from array of lat/lon coordinates: from[2][n], where
* (from[0][i], from[1][i]) is the (lat,lon) coordinate
* of the ith point
* @param to resulting array of projection coordinates: to[2][n]
* where (to[0][i], to[1][i]) is the (x,y) coordinate
* of the ith point
* @return the "to" array
*/
public double[][] projToLatLon(double[][] from, double[][] to) {
int cnt = from[0].length;
double[] fromXA = from[INDEX_X];
double[] fromYA = from[INDEX_Y];
double[] toLatA = to[INDEX_LAT];
double[] toLonA = to[INDEX_LON];
double toLat, toLon;
for (int i = 0; i < cnt; i++) {
double fromX = fromXA[i];
double fromY = fromYA[i];
fromX = fromX - false_east;
fromY = fromY - false_north;
double rho = Math.sqrt(fromX * fromX + fromY * fromY);
double r = rho / R;
double con = P - 1.0;
double com = P + 1.0;
double c = Math.asin((P - Math.sqrt(1.0 - (r * r * com) / con)) / (con / r + r / con));
toLon = lon0;
double temp = 0;
if (Math.abs(rho) > TOLERANCE) {
toLat = Math.asin(Math.cos(c) * sinLat0 + (fromY * Math.sin(c) * cosLat0 / rho));
if (Math.abs(lat0 - Math.PI / 4.0) > TOLERANCE) { // not 90 or -90
temp = rho * cosLat0 * Math.cos(c) - fromY * sinLat0 * Math.sin(c);
toLon = lon0 + Math.atan(fromX * Math.sin(c) / temp);
} else if (Double.compare(lat0, Math.PI / 4.0) == 0) {
toLon = lon0 + Math.atan(fromX / -fromY);
temp = -fromY;
} else {
toLon = lon0 + Math.atan(fromX / fromY);
temp = fromY;
}
} else {
toLat = lat0;
}
toLat = Math.toDegrees(toLat);
toLon = Math.toDegrees(toLon);
if (temp < 0) {
toLon += 180;
}
toLon = LatLonPoints.lonNormal(toLon);
toLatA[i] = toLat;
toLonA[i] = toLon;
}
return to;
}
/* ENDGENERATED */
/**
* Create a ProjectionRect from the given LatLonRect.
* Handles lat/lon points that do not intersect the projection panel.
*
* @param rect the LatLonRect
* @return ProjectionRect, or null if no part of the LatLonRect intersects the projection plane
*/
@Override
public ProjectionRect latLonToProjBB(LatLonRect rect) {
BoundingBoxHelper bbhelper = new BoundingBoxHelper(this, maxR);
return bbhelper.latLonToProjBB(rect);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy