All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.geolatte.geom.cga.NumericalMethods Maven / Gradle / Ivy

Go to download

This geoLatte-geom library offers a geometry model that conforms to the OGC Simple Features for SQL specification.

There is a newer version: 1.9.1
Show newest version
package org.geolatte.geom.cga;

import org.geolatte.geom.LinearRing;
import org.geolatte.geom.Position;
import org.geolatte.geom.PositionSequence;

import java.util.stream.IntStream;

/**
 * Created by Karel Maesen, Geovise BVBA on 01/03/15.
 */
public class NumericalMethods {

    /**
     * Calculates the determinant of a 2x2 matrix
     *
     * @param a11
     * @param a12
     * @param a21
     * @param a22
     * @return the determinant
     */
    public static double determinant(double a11, double a12, double a21, double a22) {
        TwoSum ts = new TwoSum(a11 * a22, -a12 * a21);
        return ts.estimate + ts.error; // this is different from just the estimate, if the estimate is zero
    }


    public static double crossProduct(double x0, double y0, double x1, double y1) {
        return determinant(x0, x1, y0, y1);
    }

    /**
     * Calculates the determinant of a 3x3 matrix
     *
     * @param a11
     * @param a12
     * @param a13
     * @param a21
     * @param a22
     * @param a23
     * @param a31
     * @param a32
     * @param a33
     * @return
     */
    public static double determinant(double a11, double a12, double a13, double a21, double a22, double a23, double
            a31, double a32, double a33) {

        TwoSum tl1 = new TwoSum(a11 * a22 * a33, a12 * a23 * a31);
        TwoSum tl2 = new TwoSum(tl1.estimate, a13 * a21 * a32);


        TwoSum tr1 = new TwoSum(a13 * a22 * a31, a12 * a21 * a33);
        TwoSum tr2 = new TwoSum(tr1.estimate, a11 * a23 * a32);

        TwoSum det = new TwoSum(tl2.estimate, -tr2.estimate);

        return det.estimate + det.error + tl1.error + tl2.error - tr1.error - tr2.error;
    }

    /**
     * Determines if the triangle determined by p0, p1, p2 is counterclockwise in 2D.
     * 
     * 

This is equivalent to p2 is to the left of the line p0 - p1.

* * @param p0 * @param p1 * @param p2 * @return true if counterclockwise */ public static boolean isCounterClockwise(Position p0, Position p1, Position p2) { double det = deltaDeterminant(p0, p1, p2); if (det == 0) { throw new IllegalArgumentException("Positions are collinear in 2D"); } return det > 0; } /** * Determine the (signed) area of a linearring, using the the * Shoelace algorithm. * * @param ring * @return */ public static double area(LinearRing ring) { return IntStream.range(1, ring.getPositions().size()).parallel().boxed(). map(idx -> shoelaceStep(idx, ring.getPositions())). reduce((a, b) -> a + b). filter(orientation -> orientation != 0). orElseThrow(() -> new IllegalArgumentException("Ring is collinear in 2D")) ; } private static double shoelaceStep(Integer idx, PositionSequence positions) { return determinant(positions.getPositionN(idx - 1), positions.getPositionN(idx)); } /** * Determines whether the specified {@code LinearRing} is counter-clockwise. * *

Orientation is determined by calculating the signed area of the given ring * and using the sign to determine the orientation *

The specified Ring is assumed to be valid. * * @param ring a {@code LinearRing} * @return true if the positions of the ring describe it counter-clockwise */ public static boolean isCounterClockwise(LinearRing ring) { double res = orient2d(ring); if (res == 0) { throw new IllegalArgumentException("Positions are collinear in 2D"); } return res > 0; } /** * Determine the orientation of a {@code LinearRing} * * This uses Newell's method (see Graphics Gems III, V. 5) * * @param ring the linear ring * @return +1 if the specified ring is clockwise, -1 if counterclockwise, 0 if all vertices are collinear */ public static double orient2d(LinearRing ring) { return orient2d(ring.getPositions()); } private static double orient2d(PositionSequence positions) { double d = 0; for (int i = 0; i < positions.size() - 1; i++) { double[] p1 = positions.getPositionN(i).toArray(null); double[] p2 = positions.getPositionN(i+1).toArray(null); d += (p1[0] - p2[0]) * (p1[1] + p2[1]); } return Math.signum(d); } public static boolean collinear(Position p0, Position p1, Position p2) { double det = deltaDeterminant(p0, p1, p2); return det == 0; } public static double determinant(Position p0, Position p1) { double[] c0 = p0.toArray(null); double[] c1 = p1.toArray(null); return determinant(c0[0], c0[1], c1[0], c1[1]); } private static double deltaDeterminant(Position p0, Position p1, Position p2) { double[] c0 = p0.toArray(null); double[] c1 = p1.toArray(null); double[] c2 = p2.toArray(null); return determinant(1, 1, 1, c0[0], c1[0], c2[0], c0[1], c1[1], c2[1]); } public static class TwoSum { final double estimate; final double error; public TwoSum(double a, double b) { double s = a + b; double a1 = s - b; double b1 = s - a1; double deltaA = a - a1; double deltaB = b - b1; estimate = s; error = deltaA + deltaB; } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy