All Downloads are FREE. Search and download functionalities are using the official Maven repository.

georegression.transform.se.AverageQuaternion_F64 Maven / Gradle / Ivy

Go to download

GeoRegression is a free Java based geometry library for scientific computing in fields such as robotics and computer vision with a focus on 2D/3D space.

There is a newer version: 0.27.1
Show newest version
/*
 * Copyright (C) 2011-2017, Peter Abeles. All Rights Reserved.
 *
 * This file is part of Geometric Regression Library (GeoRegression).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package georegression.transform.se;

import georegression.struct.so.Quaternion_F64;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.row.factory.DecompositionFactory_DDRM;
import org.ejml.interfaces.decomposition.EigenDecomposition_F64;

import java.util.List;

/**
 * 

Finds the average of a set of {@link Quaternion_F64 quaternions} by using a method proposed in [1].

* *

[1] MLA Markley, F. Landis, et al. "Quaternion averaging." (2007)

* * @author Peter Abeles */ public class AverageQuaternion_F64 { DMatrixRMaj M = new DMatrixRMaj(4,4); EigenDecomposition_F64 eig = DecompositionFactory_DDRM.eig(4,true,true); public boolean process(List list , Quaternion_F64 average ) { if( list.isEmpty() ) throw new IllegalArgumentException("Input list is empty"); if( average == null ) throw new IllegalArgumentException("average is null"); M.zero(); for (int i = 0; i < list.size(); i++) { Quaternion_F64 q = list.get(i); // Perform M = M + q*q^T // Where q is a column [w,x,y,z] vector // row 0 M.data[0] += q.w*q.w; M.data[1] += q.w*q.x; M.data[2] += q.w*q.y; M.data[3] += q.w*q.z; // row 1 M.data[4] += q.x*q.w; M.data[5] += q.x*q.x; M.data[6] += q.x*q.y; M.data[7] += q.x*q.z; // row 2 M.data[8] += q.y*q.w; M.data[9] += q.y*q.x; M.data[10] += q.y*q.y; M.data[11] += q.y*q.z; // row 3 M.data[12] += q.z*q.w; M.data[13] += q.z*q.x; M.data[14] += q.z*q.y; M.data[15] += q.z*q.z; } if( !eig.decompose(M) ) return false; // the largest eigenvector is the quaternion int largest = 0; double largestMag = eig.getEigenvalue(0).getMagnitude2(); for (int i = 1; i < 4; i++) { double mag = eig.getEigenvalue(i).getMagnitude2(); if( mag > largestMag ) { largestMag = mag; largest = i; } } DMatrixRMaj v = eig.getEigenVector(largest); // this will be a normalized quaternion due to properties of eigenvectors average.w = (double) v.get(0); average.x = (double) v.get(1); average.y = (double) v.get(2); average.z = (double) v.get(3); return true; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy