georegression.fitting.line.FitLineParametricSvd_F64 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of georegression Show documentation
Show all versions of georegression Show documentation
GeoRegression is a free Java based geometry library for scientific computing in fields such as robotics and computer vision with a focus on 2D/3D space.
The newest version!
/*
* Copyright (C) 2020, Peter Abeles. All Rights Reserved.
*
* This file is part of Geometric Regression Library (GeoRegression).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package georegression.fitting.line;
import georegression.struct.line.LineParametric2D_F64;
import georegression.struct.point.Point2D_F64;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.row.CommonOps_DDRM;
import org.ejml.dense.row.linsol.qr.SolveNullSpaceQRP_DDRM;
import org.ejml.interfaces.SolveNullSpace;
import java.util.List;
/**
* Fits a {@link LineParametric2D_F64} to a set of points by minimizing algebraic error. Points are normalized
* to have zero mean and a stdev of 1 along each axis. Then the slope is found as the nullspace using SVD.
*
* @author Peter Abeles
*/
public class FitLineParametricSvd_F64 {
// normalization parameters
double mean_x,mean_y;
double std_x,std_y;
public SolveNullSpace solver = new SolveNullSpaceQRP_DDRM();
DMatrixRMaj A = new DMatrixRMaj(1,1);
DMatrixRMaj AA = new DMatrixRMaj(1,1);
DMatrixRMaj ns = new DMatrixRMaj(2,1);
/**
* Fits a line to the points
* @param points Set of points being fit
* @param line (Output) best fit line
* @return true if successful
*/
public boolean fit( List points , LineParametric2D_F64 line ) {
computeNormalization(points);
A.reshape(points.size(),2);
for (int i = 0,idx=0; i < points.size(); i++) {
Point2D_F64 p = points.get(i);
// normalize points to have zero mean and std of 1
A.data[idx++] = (p.x-mean_x)/std_x;
A.data[idx++] = (p.y-mean_y)/std_y;
}
CommonOps_DDRM.multTransA(A,A,AA);
if( solver.process(AA,1,ns)) {
line.p.setTo(mean_x,mean_y);
line.slope.x = -ns.data[1]*std_x;
line.slope.y = ns.data[0]*std_y;
return true;
} else {
return false;
}
}
private void computeNormalization( List points ) {
mean_x = mean_y = 0;
std_x = std_y = 0;
for (int i = 0; i < points.size(); i++) {
Point2D_F64 p = points.get(i);
mean_x += p.x;
mean_y += p.y;
}
mean_x /= points.size();
mean_y /= points.size();
for (int i = 0; i < points.size(); i++) {
Point2D_F64 p = points.get(i);
double dx = p.x - mean_x;
double dy = p.y - mean_y;
std_x += dx*dx;
std_y += dy*dy;
}
// if std is 0 then all the values are the same. set scale to mean so that they are all equal to 1
std_x = std_x == 0.0 ? Math.abs(mean_x) : Math.sqrt(std_x/points.size());
std_y = std_y == 0.0 ? Math.abs(mean_y) : Math.sqrt(std_y/points.size());
}
}