georegression.metric.alg.DistancePointTriangle3D_F32 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of georegression Show documentation
Show all versions of georegression Show documentation
GeoRegression is a free Java based geometry library for scientific computing in fields such as robotics and computer vision with a focus on 2D/3D space.
The newest version!
/*
* Copyright (C) 2021, Peter Abeles. All Rights Reserved.
*
* This file is part of Geometric Regression Library (GeoRegression).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package georegression.metric.alg;
import javax.annotation.Generated;
import georegression.geometry.GeometryMath_F32;
import georegression.struct.point.Point3D_F32;
import georegression.struct.point.Vector3D_F32;
/**
* Computes the closest point and distance between a triangle in 3D and the closest point on a triangle.
*
* David Eberly, "Distance Between Point and Triangle in 3D", Geometric Tools, LLC, 1999
*
* @author Peter Abeles
*/
@Generated("georegression.metric.alg.DistancePointTriangle3D_F64")
public class DistancePointTriangle3D_F32 {
// description of triangle
private Point3D_F32 B = new Point3D_F32();
private Vector3D_F32 E0 = new Vector3D_F32();
private Vector3D_F32 E1 = new Vector3D_F32();
// storage for cross product of E0 and E1
private Vector3D_F32 N = new Vector3D_F32();
// coefficients for triangle. 0 <= s,t <= 1 and s+t <= 1
// any point can be uniquely described using s and t
// T(s,t) = B + s*E0 + t*S1
private float s, t;
// storage for B-P
private Vector3D_F32 D = new Vector3D_F32();
private float a,b,c,d,e;
public void setTriangle(Point3D_F32 p0, Point3D_F32 p1, Point3D_F32 p2) {
// convert triangle into new format
B.setTo(p0);
GeometryMath_F32.sub(p1, p0, E0);
GeometryMath_F32.sub(p2, p0, E1);
}
/**
* Find the closest point on the triangle to P.
* @param P Input. The point for which the closest point is to be found.
* @param closestPt Output. The found closest point.
*/
public void closestPoint(Point3D_F32 P , Point3D_F32 closestPt ) {
// D = B-P
GeometryMath_F32.sub(B, P, D);
a = E0.dot(E0);
b = E0.dot(E1);
c = E1.dot(E1);
d = E0.dot(D);
e = E1.dot(D);
float det = a * c - b * b;
s = b * e - c * d;
t = b * d - a * e;
if (s + t <= det) {
if (s < 0) {
if (t < 0) {
region4();
} else {
region3();
}
} else if (t < 0) {
region5();
} else {
region0(det);
}
} else {
if (s < 0) {
region2();
} else if (t < 0) {
region6();
} else {
region1();
}
}
closestPt.x = B.x + s*E0.x + t*E1.x;
closestPt.y = B.y + s*E0.y + t*E1.y;
closestPt.z = B.z + s*E0.z + t*E1.z;
}
/**
* Returns the signed of the vector. If its "in front" it will be positive and negative if "behind". In front
* is defined as being on the same side as the cross product of p2-p0 and p1-p0.
*
* @param P Point for which the sign is determined
*/
public float sign( Point3D_F32 P ) {
GeometryMath_F32.cross(E1,E0,N);
// dot product of
float d = N.x*(P.x-B.x) + N.y*(P.y-B.y) + N.z*(P.z-B.z);
return (float)Math.signum(d);
}
protected void region0(float det) {
float invDet = 1.0f / det;
s *= invDet;
t *= invDet;
}
protected void region1() {
float numer = c + e - b - d;
if (numer <= 0) {
s = 0;
} else {
float denom = a - 2 * b + c;
s = (numer >= denom) ? 1 : numer / denom;
}
t = 1 - s;
}
protected void region2() {
float tmp0 = b + d;
float tmp1 = c + e;
if( tmp1 > tmp0 ) {
float numer = tmp1 - tmp0;
float denom = a - 2 * b + c;
s = numer <= denom ? 1 : numer/denom;
t = 1 - s;
} else {
s = 0;
t = tmp1 <= 0 ? 1 : (e >= 0 ? 0 : -e/c);
}
}
protected void region3() {
s = 0;
t = e >= 0 ? 0 : (-e >= c ? 1 : -e/c);
}
protected void region4() {
if (d < 0) {
t = 0;
s = -d >= a ? 1 : -d/a;
}else{
s = 0;
t = e >= 0 ? 0 : (-e >= c ? 1 : -e/c);
}
}
protected void region5() {
t = 0;
s = d >= 0 ? 0 : (-d >= a ? 1 : -d/a );
}
protected void region6() {
float tmp0 = b + e;
float tmp1 = a + d;
if (tmp1 > tmp0) {
float numer = tmp1 - tmp0;
float denom = a - 2 * b + c;
t = numer >= denom ? 1 : numer/denom;
s = 1 - t;
}else{
t = 0;
s = tmp1 <= 0 ? 1 : (d >= 0 ? 0 : -d/a);
}
}
}