
georegression.fitting.curves.FitConicA_F64 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of georegression Show documentation
Show all versions of georegression Show documentation
GeoRegression is a free Java based geometry library for scientific computing in fields such as robotics and computer vision with a focus on 2D/3D space.
/*
* Copyright (C) 2021, Peter Abeles. All Rights Reserved.
*
* This file is part of Geometric Regression Library (GeoRegression).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package georegression.fitting.curves;
import georegression.fitting.FitShapeToPoints_F64;
import georegression.struct.curve.ConicGeneral_F64;
import georegression.struct.point.Point2D_F64;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.row.linsol.svd.SolveNullSpaceSvd_DDRM;
import org.ejml.interfaces.SolveNullSpace;
import java.util.List;
/**
* Fit's a parabola to a set of points by finding the null space of A. More numerically stable than
* {@link FitConicAtA_F64} but slower.
*
* @author Peter Abeles
*/
public class FitConicA_F64 implements FitShapeToPoints_F64
{
private SolveNullSpace solver = new SolveNullSpaceSvd_DDRM();
private DMatrixRMaj A = new DMatrixRMaj(6,6);
private DMatrixRMaj nullspace = new DMatrixRMaj(6,1);
/**
* Fits the conic to the points. Strongly recommended that you transform the points such that they have
* zero mean and a standard deviation along x and y axis, independently.
*
* @param points (Input) points
* @param output (Output) found conic
* @return true if successful or false if it failed
*/
@Override
public boolean process(List points , ConicGeneral_F64 output ) {
final int N = points.size();
if( N < 3 )
throw new IllegalArgumentException("At least 3 points required");
A.reshape(N,6);
for (int i = 0,index=0; i < N; i++) {
Point2D_F64 p = points.get(i);
double x = p.x;
double y = p.y;
A.data[index++] = x*x;
A.data[index++] = x*y;
A.data[index++] = y*y;
A.data[index++] = x;
A.data[index++] = y;
A.data[index++] = 1;
}
if( !solver.process(A,1,nullspace) )
return false;
output.A = nullspace.data[0];
output.B = nullspace.data[1];
output.C = nullspace.data[2];
output.D = nullspace.data[3];
output.E = nullspace.data[4];
output.F = nullspace.data[5];
return true;
}
/**
* Fits the conic to the weighted set of points. Strongly recommended that you transform the points such
* that they have zero mean and a standard deviation along x and y axis, independently.
*
* @param points (Input) points
* @param output (Output) found conic
* @return true if successful or false if it failed
*/
@Override
public boolean process(List points , double weights[], ConicGeneral_F64 output ) {
final int N = points.size();
if( N < 3 )
throw new IllegalArgumentException("At least 3 points required");
A.reshape(N,6);
for (int i = 0,index=0; i < N; i++) {
Point2D_F64 p = points.get(i);
double w = weights[i];
double x = p.x;
double y = p.y;
A.data[index++] = w*x*x;
A.data[index++] = w*x*y;
A.data[index++] = w*y*y;
A.data[index++] = w*x;
A.data[index++] = w*y;
A.data[index++] = w;
}
if( !solver.process(A,1,nullspace) )
return false;
output.A = nullspace.data[0];
output.B = nullspace.data[1];
output.C = nullspace.data[2];
output.D = nullspace.data[3];
output.E = nullspace.data[4];
output.F = nullspace.data[5];
return true;
}
public SolveNullSpace getSolver() {
return solver;
}
public void setSolver(SolveNullSpace solver) {
this.solver = solver;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy