org.gephi.layout.plugin.noverlap.NoverlapLayout Maven / Gradle / Ivy
The newest version!
/*
Copyright 2008-2011 Gephi
Authors : Mathieu Jacomy
Website : http://www.gephi.org
This file is part of Gephi.
DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER.
Copyright 2011 Gephi Consortium. All rights reserved.
The contents of this file are subject to the terms of either the GNU
General Public License Version 3 only ("GPL") or the Common
Development and Distribution License("CDDL") (collectively, the
"License"). You may not use this file except in compliance with the
License. You can obtain a copy of the License at
http://gephi.org/about/legal/license-notice/
or /cddl-1.0.txt and /gpl-3.0.txt. See the License for the
specific language governing permissions and limitations under the
License. When distributing the software, include this License Header
Notice in each file and include the License files at
/cddl-1.0.txt and /gpl-3.0.txt. If applicable, add the following below the
License Header, with the fields enclosed by brackets [] replaced by
your own identifying information:
"Portions Copyrighted [year] [name of copyright owner]"
If you wish your version of this file to be governed by only the CDDL
or only the GPL Version 3, indicate your decision by adding
"[Contributor] elects to include this software in this distribution
under the [CDDL or GPL Version 3] license." If you do not indicate a
single choice of license, a recipient has the option to distribute
your version of this file under either the CDDL, the GPL Version 3 or
to extend the choice of license to its licensees as provided above.
However, if you add GPL Version 3 code and therefore, elected the GPL
Version 3 license, then the option applies only if the new code is
made subject to such option by the copyright holder.
Contributor(s):
Portions Copyrighted 2011 Gephi Consortium.
*/
package org.gephi.layout.plugin.noverlap;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import org.gephi.graph.api.Graph;
import org.gephi.graph.api.Node;
import org.gephi.graph.api.NodeIterable;
import org.gephi.layout.plugin.AbstractLayout;
import org.gephi.layout.spi.Layout;
import org.gephi.layout.spi.LayoutBuilder;
import org.gephi.layout.spi.LayoutProperty;
import org.gephi.utils.longtask.spi.LongTask;
import org.gephi.utils.progress.ProgressTicket;
import org.openide.util.Exceptions;
/**
* @author Mathieu Jacomy
*/
public class NoverlapLayout extends AbstractLayout implements Layout, LongTask {
protected boolean cancel;
protected Graph graph;
private double speed;
private double ratio;
private double margin;
private double xmin;
private double xmax;
private double ymin;
private double ymax;
public NoverlapLayout(LayoutBuilder layoutBuilder) {
super(layoutBuilder);
}
@Override
public void initAlgo() {
this.graph = graphModel.getGraphVisible();
setConverged(false);
cancel = false;
}
@Override
public void goAlgo() {
setConverged(true);
this.graph = graphModel.getGraphVisible();
graph.readLock();
try {
//Reset Layout Data
for (Node n : graph.getNodes()) {
if (n.getLayoutData() == null || !(n.getLayoutData() instanceof NoverlapLayoutData)) {
n.setLayoutData(new NoverlapLayoutData());
}
NoverlapLayoutData layoutData = n.getLayoutData();
layoutData.neighbours.clear();
layoutData.dx = 0;
layoutData.dy = 0;
}
// Get xmin, xmax, ymin, ymax
this.xmin = Double.MAX_VALUE;
this.xmax = Double.MIN_VALUE;
this.ymin = Double.MAX_VALUE;
this.ymax = Double.MIN_VALUE;
for (Node n : graph.getNodes()) {
float x = n.x();
float y = n.y();
float radius = n.size();
// Get the rectangle occupied by the node
double nxmin = x - (radius * ratio + margin);
double nxmax = x + (radius * ratio + margin);
double nymin = y - (radius * ratio + margin);
double nymax = y + (radius * ratio + margin);
// Update global boundaries
this.xmin = Math.min(this.xmin, nxmin);
this.xmax = Math.max(this.xmax, nxmax);
this.ymin = Math.min(this.ymin, nymin);
this.ymax = Math.max(this.ymax, nymax);
}
// Secure the bounds
double xwidth = this.xmax - this.xmin;
double yheight = this.ymax - this.ymin;
double xcenter = (this.xmin + this.xmax) / 2;
double ycenter = (this.ymin + this.ymax) / 2;
double securityRatio = 1.1;
this.xmin = xcenter - securityRatio * xwidth / 2;
this.xmax = xcenter + securityRatio * xwidth / 2;
this.ymin = ycenter - securityRatio * yheight / 2;
this.ymax = ycenter + securityRatio * yheight / 2;
SpatialGrid grid = new SpatialGrid();
// Put nodes in their boxes
for (Node n : graph.getNodes()) {
grid.add(n);
}
// Now we have cells with nodes in it. Nodes that are in the same cell, or in adjacent cells, are tested for repulsion.
// But they are not repulsed several times, even if they are in several cells...
// So we build a relation of proximity between nodes.
// Build proximities
for (int row = 0; row < grid.countRows() && !cancel; row++) {
for (int col = 0; col < grid.countColumns() && !cancel; col++) {
for (Node n : grid.getContent(row, col)) {
NoverlapLayoutData lald = n.getLayoutData();
// For node n in the box "box"...
// We search nodes that are in the boxes that are adjacent or the same.
for (int row2 = Math.max(0, row - 1); row2 <= Math.min(row + 1, grid.countRows() - 1); row2++) {
for (int col2 = Math.max(0, col - 1); col2 <= Math.min(col + 1, grid.countColumns() - 1);
col2++) {
for (Node n2 : grid.getContent(row2, col2)) {
if (n2 != n && !lald.neighbours.contains(n2)) {
lald.neighbours.add(n2);
}
}
}
}
}
}
}
// Proximities are built !
// Apply repulsion force - along proximities...
NodeIterable nodesIterable = graph.getNodes();
for (Node n1 : nodesIterable) {
NoverlapLayoutData lald = n1.getLayoutData();
for (Node n2 : lald.neighbours) {
float n1x = n1.x();
float n1y = n1.y();
float n2x = n2.x();
float n2y = n2.y();
float n1radius = n1.size();
float n2radius = n2.size();
// Check sizes (spheric)
double xDist = n2x - n1x;
double yDist = n2y - n1y;
double dist = Math.sqrt(xDist * xDist + yDist * yDist);
boolean collision = dist < (n1radius * ratio + margin) + (n2radius * ratio + margin);
if (collision) {
setConverged(false);
// n1 repulses n2, as strongly as it is big
NoverlapLayoutData layoutData = n2.getLayoutData();
double f = 1. + n1.size();
if (dist > 0) {
layoutData.dx += xDist / dist * f;
layoutData.dy += yDist / dist * f;
} else {
// Same exact position, divide by zero impossible: jitter
layoutData.dx += 0.01 * (0.5 - Math.random());
layoutData.dy += 0.01 * (0.5 - Math.random());
}
}
if (cancel) {
break;
}
}
if (cancel) {
nodesIterable.doBreak();
break;
}
}
// apply forces
for (Node n : graph.getNodes()) {
NoverlapLayoutData layoutData = n.getLayoutData();
if (!n.isFixed()) {
layoutData.dx *= 0.1 * speed;
layoutData.dy *= 0.1 * speed;
float x = n.x() + layoutData.dx;
float y = n.y() + layoutData.dy;
n.setX(x);
n.setY(y);
}
}
} finally {
graph.readUnlockAll();
}
}
@Override
public void endAlgo() {
graph.readLock();
try {
for (Node n : graph.getNodes()) {
n.setLayoutData(null);
}
} finally {
graph.readUnlockAll();
}
}
@Override
public LayoutProperty[] getProperties() {
List properties = new ArrayList<>();
final String NOVERLAP_CATEGORY = "Noverlap";
try {
properties.add(LayoutProperty.createProperty(
this, Double.class, "speed", NOVERLAP_CATEGORY, "speed", "getSpeed", "setSpeed"));
} catch (Exception e) {
Exceptions.printStackTrace(e);
}
try {
properties.add(LayoutProperty.createProperty(
this, Double.class, "ratio", NOVERLAP_CATEGORY, "ratio", "getRatio", "setRatio"));
} catch (Exception e) {
Exceptions.printStackTrace(e);
}
try {
properties.add(LayoutProperty.createProperty(
this, Double.class, "margin", NOVERLAP_CATEGORY, "margin", "getMargin", "setMargin"));
} catch (Exception e) {
Exceptions.printStackTrace(e);
}
return properties.toArray(new LayoutProperty[0]);
}
@Override
public void resetPropertiesValues() {
setSpeed(3.);
setRatio(1.2);
setMargin(5.);
}
public Double getSpeed() {
return speed;
}
public void setSpeed(Double speed) {
this.speed = speed;
}
public Double getRatio() {
return ratio;
}
public void setRatio(Double ratio) {
this.ratio = ratio;
}
public Double getMargin() {
return margin;
}
public void setMargin(Double margin) {
this.margin = margin;
}
@Override
public boolean cancel() {
cancel = true;
return cancel;
}
@Override
public void setProgressTicket(ProgressTicket progressTicket) {
}
private static class Cell {
private final int row;
private final int col;
public Cell(int row, int col) {
this.row = row;
this.col = col;
}
@Override
public boolean equals(Object obj) {
if (obj == null) {
return false;
}
if (getClass() != obj.getClass()) {
return false;
}
final Cell other = (Cell) obj;
if (this.row != other.row) {
return false;
}
return this.col == other.col;
}
@Override
public int hashCode() {
int hash = 7;
hash = 11 * hash + this.row;
hash = 11 * hash + this.col;
return hash;
}
}
private class SpatialGrid {
//Param
private final int COLUMNS_ROWS = 20;
//Data
private final Map> data = new HashMap<>();
public SpatialGrid() {
for (int row = 0; row < COLUMNS_ROWS; row++) {
for (int col = 0; col < COLUMNS_ROWS; col++) {
List localnodes = new ArrayList<>();
data.put(new Cell(row, col), localnodes);
}
}
}
public Iterable getContent(int row, int col) {
return data.get(new Cell(row, col));
}
public int countColumns() {
return COLUMNS_ROWS;
}
public int countRows() {
return COLUMNS_ROWS;
}
public void add(Node node) {
float x = node.x();
float y = node.y();
float radius = node.size();
// Get the rectangle occupied by the node
double nxmin = x - (radius * ratio + margin);
double nxmax = x + (radius * ratio + margin);
double nymin = y - (radius * ratio + margin);
double nymax = y + (radius * ratio + margin);
// Get the rectangle as boxes
int minXbox = (int) Math.floor((COLUMNS_ROWS - 1) * (nxmin - xmin) / (xmax - xmin));
int maxXbox = (int) Math.floor((COLUMNS_ROWS - 1) * (nxmax - xmin) / (xmax - xmin));
int minYbox = (int) Math.floor((COLUMNS_ROWS - 1) * (nymin - ymin) / (ymax - ymin));
int maxYbox = (int) Math.floor((COLUMNS_ROWS - 1) * (nymax - ymin) / (ymax - ymin));
for (int col = minXbox; col <= maxXbox; col++) {
for (int row = minYbox; row <= maxYbox; row++) {
try {
data.get(new Cell(row, col)).add(node);
} catch (Exception e) {
//Exceptions.printStackTrace(e);
if (nxmin < xmin || nxmax > xmax) {
}
if (nymin < ymin || nymax > ymax) {
}
}
}
}
}
}
}
|