All Downloads are FREE. Search and download functionalities are using the official Maven repository.

jersey.repackaged.com.google.common.math.LongMath Maven / Gradle / Ivy

There is a newer version: 2.26-b03
Show newest version
/*
 * Copyright (C) 2011 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package jersey.repackaged.com.google.common.math;

import static jersey.repackaged.com.google.common.base.Preconditions.checkArgument;
import static jersey.repackaged.com.google.common.base.Preconditions.checkNotNull;
import static jersey.repackaged.com.google.common.math.MathPreconditions.checkNoOverflow;
import static jersey.repackaged.com.google.common.math.MathPreconditions.checkNonNegative;
import static jersey.repackaged.com.google.common.math.MathPreconditions.checkPositive;
import static jersey.repackaged.com.google.common.math.MathPreconditions.checkRoundingUnnecessary;
import static java.lang.Math.abs;
import static java.lang.Math.min;
import static java.math.RoundingMode.HALF_EVEN;
import static java.math.RoundingMode.HALF_UP;

import jersey.repackaged.com.google.common.annotations.GwtCompatible;
import jersey.repackaged.com.google.common.annotations.GwtIncompatible;
import jersey.repackaged.com.google.common.annotations.VisibleForTesting;

import java.math.BigInteger;
import java.math.RoundingMode;

/**
 * A class for arithmetic on values of type {@code long}. Where possible, methods are defined and
 * named analogously to their {@code BigInteger} counterparts.
 *
 * 

The implementations of many methods in this class are based on material from Henry S. Warren, * Jr.'s Hacker's Delight, (Addison Wesley, 2002). * *

Similar functionality for {@code int} and for {@link BigInteger} can be found in * {@link IntMath} and {@link BigIntegerMath} respectively. For other common operations on * {@code long} values, see {@link jersey.repackaged.com.google.common.primitives.Longs}. * * @author Louis Wasserman * @since 11.0 */ @GwtCompatible(emulated = true) public final class LongMath { // NOTE: Whenever both tests are cheap and functional, it's faster to use &, | instead of &&, || /** * Returns {@code true} if {@code x} represents a power of two. * *

This differs from {@code Long.bitCount(x) == 1}, because * {@code Long.bitCount(Long.MIN_VALUE) == 1}, but {@link Long#MIN_VALUE} is not a power of two. */ public static boolean isPowerOfTwo(long x) { return x > 0 & (x & (x - 1)) == 0; } /** * Returns 1 if {@code x < y} as unsigned longs, and 0 otherwise. Assumes that x - y fits into a * signed long. The implementation is branch-free, and benchmarks suggest it is measurably * faster than the straightforward ternary expression. */ @VisibleForTesting static int lessThanBranchFree(long x, long y) { // Returns the sign bit of x - y. return (int) (~~(x - y) >>> (Long.SIZE - 1)); } /** * Returns the base-2 logarithm of {@code x}, rounded according to the specified rounding mode. * * @throws IllegalArgumentException if {@code x <= 0} * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x} * is not a power of two */ @SuppressWarnings("fallthrough") // TODO(kevinb): remove after this warning is disabled globally public static int log2(long x, RoundingMode mode) { checkPositive("x", x); switch (mode) { case UNNECESSARY: checkRoundingUnnecessary(isPowerOfTwo(x)); // fall through case DOWN: case FLOOR: return (Long.SIZE - 1) - Long.numberOfLeadingZeros(x); case UP: case CEILING: return Long.SIZE - Long.numberOfLeadingZeros(x - 1); case HALF_DOWN: case HALF_UP: case HALF_EVEN: // Since sqrt(2) is irrational, log2(x) - logFloor cannot be exactly 0.5 int leadingZeros = Long.numberOfLeadingZeros(x); long cmp = MAX_POWER_OF_SQRT2_UNSIGNED >>> leadingZeros; // floor(2^(logFloor + 0.5)) int logFloor = (Long.SIZE - 1) - leadingZeros; return logFloor + lessThanBranchFree(cmp, x); default: throw new AssertionError("impossible"); } } /** The biggest half power of two that fits into an unsigned long */ @VisibleForTesting static final long MAX_POWER_OF_SQRT2_UNSIGNED = 0xB504F333F9DE6484L; /** * Returns the base-10 logarithm of {@code x}, rounded according to the specified rounding mode. * * @throws IllegalArgumentException if {@code x <= 0} * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x} * is not a power of ten */ @GwtIncompatible("TODO") @SuppressWarnings("fallthrough") // TODO(kevinb): remove after this warning is disabled globally public static int log10(long x, RoundingMode mode) { checkPositive("x", x); int logFloor = log10Floor(x); long floorPow = powersOf10[logFloor]; switch (mode) { case UNNECESSARY: checkRoundingUnnecessary(x == floorPow); // fall through case FLOOR: case DOWN: return logFloor; case CEILING: case UP: return logFloor + lessThanBranchFree(floorPow, x); case HALF_DOWN: case HALF_UP: case HALF_EVEN: // sqrt(10) is irrational, so log10(x)-logFloor is never exactly 0.5 return logFloor + lessThanBranchFree(halfPowersOf10[logFloor], x); default: throw new AssertionError(); } } @GwtIncompatible("TODO") static int log10Floor(long x) { /* * Based on Hacker's Delight Fig. 11-5, the two-table-lookup, branch-free implementation. * * The key idea is that based on the number of leading zeros (equivalently, floor(log2(x))), * we can narrow the possible floor(log10(x)) values to two. For example, if floor(log2(x)) * is 6, then 64 <= x < 128, so floor(log10(x)) is either 1 or 2. */ int y = maxLog10ForLeadingZeros[Long.numberOfLeadingZeros(x)]; /* * y is the higher of the two possible values of floor(log10(x)). If x < 10^y, then we want the * lower of the two possible values, or y - 1, otherwise, we want y. */ return y - lessThanBranchFree(x, powersOf10[y]); } // maxLog10ForLeadingZeros[i] == floor(log10(2^(Long.SIZE - i))) @VisibleForTesting static final byte[] maxLog10ForLeadingZeros = { 19, 18, 18, 18, 18, 17, 17, 17, 16, 16, 16, 15, 15, 15, 15, 14, 14, 14, 13, 13, 13, 12, 12, 12, 12, 11, 11, 11, 10, 10, 10, 9, 9, 9, 9, 8, 8, 8, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 0, 0, 0 }; @GwtIncompatible("TODO") @VisibleForTesting static final long[] powersOf10 = { 1L, 10L, 100L, 1000L, 10000L, 100000L, 1000000L, 10000000L, 100000000L, 1000000000L, 10000000000L, 100000000000L, 1000000000000L, 10000000000000L, 100000000000000L, 1000000000000000L, 10000000000000000L, 100000000000000000L, 1000000000000000000L }; // halfPowersOf10[i] = largest long less than 10^(i + 0.5) @GwtIncompatible("TODO") @VisibleForTesting static final long[] halfPowersOf10 = { 3L, 31L, 316L, 3162L, 31622L, 316227L, 3162277L, 31622776L, 316227766L, 3162277660L, 31622776601L, 316227766016L, 3162277660168L, 31622776601683L, 316227766016837L, 3162277660168379L, 31622776601683793L, 316227766016837933L, 3162277660168379331L }; /** * Returns {@code b} to the {@code k}th power. Even if the result overflows, it will be equal to * {@code BigInteger.valueOf(b).pow(k).longValue()}. This implementation runs in {@code O(log k)} * time. * * @throws IllegalArgumentException if {@code k < 0} */ @GwtIncompatible("TODO") public static long pow(long b, int k) { checkNonNegative("exponent", k); if (-2 <= b && b <= 2) { switch ((int) b) { case 0: return (k == 0) ? 1 : 0; case 1: return 1; case (-1): return ((k & 1) == 0) ? 1 : -1; case 2: return (k < Long.SIZE) ? 1L << k : 0; case (-2): if (k < Long.SIZE) { return ((k & 1) == 0) ? 1L << k : -(1L << k); } else { return 0; } default: throw new AssertionError(); } } for (long accum = 1;; k >>= 1) { switch (k) { case 0: return accum; case 1: return accum * b; default: accum *= ((k & 1) == 0) ? 1 : b; b *= b; } } } /** * Returns the square root of {@code x}, rounded with the specified rounding mode. * * @throws IllegalArgumentException if {@code x < 0} * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and * {@code sqrt(x)} is not an integer */ @GwtIncompatible("TODO") @SuppressWarnings("fallthrough") public static long sqrt(long x, RoundingMode mode) { checkNonNegative("x", x); if (fitsInInt(x)) { return IntMath.sqrt((int) x, mode); } /* * Let k be the true value of floor(sqrt(x)), so that * * k * k <= x < (k + 1) * (k + 1) * (double) (k * k) <= (double) x <= (double) ((k + 1) * (k + 1)) * since casting to double is nondecreasing. * Note that the right-hand inequality is no longer strict. * Math.sqrt(k * k) <= Math.sqrt(x) <= Math.sqrt((k + 1) * (k + 1)) * since Math.sqrt is monotonic. * (long) Math.sqrt(k * k) <= (long) Math.sqrt(x) <= (long) Math.sqrt((k + 1) * (k + 1)) * since casting to long is monotonic * k <= (long) Math.sqrt(x) <= k + 1 * since (long) Math.sqrt(k * k) == k, as checked exhaustively in * {@link LongMathTest#testSqrtOfPerfectSquareAsDoubleIsPerfect} */ long guess = (long) Math.sqrt(x); // Note: guess is always <= FLOOR_SQRT_MAX_LONG. long guessSquared = guess * guess; // Note (2013-2-26): benchmarks indicate that, inscrutably enough, using if statements is // faster here than using lessThanBranchFree. switch (mode) { case UNNECESSARY: checkRoundingUnnecessary(guessSquared == x); return guess; case FLOOR: case DOWN: if (x < guessSquared) { return guess - 1; } return guess; case CEILING: case UP: if (x > guessSquared) { return guess + 1; } return guess; case HALF_DOWN: case HALF_UP: case HALF_EVEN: long sqrtFloor = guess - ((x < guessSquared) ? 1 : 0); long halfSquare = sqrtFloor * sqrtFloor + sqrtFloor; /* * We wish to test whether or not x <= (sqrtFloor + 0.5)^2 = halfSquare + 0.25. Since both * x and halfSquare are integers, this is equivalent to testing whether or not x <= * halfSquare. (We have to deal with overflow, though.) * * If we treat halfSquare as an unsigned long, we know that * sqrtFloor^2 <= x < (sqrtFloor + 1)^2 * halfSquare - sqrtFloor <= x < halfSquare + sqrtFloor + 1 * so |x - halfSquare| <= sqrtFloor. Therefore, it's safe to treat x - halfSquare as a * signed long, so lessThanBranchFree is safe for use. */ return sqrtFloor + lessThanBranchFree(halfSquare, x); default: throw new AssertionError(); } } /** * Returns the result of dividing {@code p} by {@code q}, rounding using the specified * {@code RoundingMode}. * * @throws ArithmeticException if {@code q == 0}, or if {@code mode == UNNECESSARY} and {@code a} * is not an integer multiple of {@code b} */ @GwtIncompatible("TODO") @SuppressWarnings("fallthrough") public static long divide(long p, long q, RoundingMode mode) { checkNotNull(mode); long div = p / q; // throws if q == 0 long rem = p - q * div; // equals p % q if (rem == 0) { return div; } /* * Normal Java division rounds towards 0, consistently with RoundingMode.DOWN. We just have to * deal with the cases where rounding towards 0 is wrong, which typically depends on the sign of * p / q. * * signum is 1 if p and q are both nonnegative or both negative, and -1 otherwise. */ int signum = 1 | (int) ((p ^ q) >> (Long.SIZE - 1)); boolean increment; switch (mode) { case UNNECESSARY: checkRoundingUnnecessary(rem == 0); // fall through case DOWN: increment = false; break; case UP: increment = true; break; case CEILING: increment = signum > 0; break; case FLOOR: increment = signum < 0; break; case HALF_EVEN: case HALF_DOWN: case HALF_UP: long absRem = abs(rem); long cmpRemToHalfDivisor = absRem - (abs(q) - absRem); // subtracting two nonnegative longs can't overflow // cmpRemToHalfDivisor has the same sign as compare(abs(rem), abs(q) / 2). if (cmpRemToHalfDivisor == 0) { // exactly on the half mark increment = (mode == HALF_UP | (mode == HALF_EVEN & (div & 1) != 0)); } else { increment = cmpRemToHalfDivisor > 0; // closer to the UP value } break; default: throw new AssertionError(); } return increment ? div + signum : div; } /** * Returns {@code x mod m}, a non-negative value less than {@code m}. * This differs from {@code x % m}, which might be negative. * *

For example: * *

 {@code
   *
   * mod(7, 4) == 3
   * mod(-7, 4) == 1
   * mod(-1, 4) == 3
   * mod(-8, 4) == 0
   * mod(8, 4) == 0}
* * @throws ArithmeticException if {@code m <= 0} * @see * Remainder Operator */ @GwtIncompatible("TODO") public static int mod(long x, int m) { // Cast is safe because the result is guaranteed in the range [0, m) return (int) mod(x, (long) m); } /** * Returns {@code x mod m}, a non-negative value less than {@code m}. * This differs from {@code x % m}, which might be negative. * *

For example: * *

 {@code
   *
   * mod(7, 4) == 3
   * mod(-7, 4) == 1
   * mod(-1, 4) == 3
   * mod(-8, 4) == 0
   * mod(8, 4) == 0}
* * @throws ArithmeticException if {@code m <= 0} * @see * Remainder Operator */ @GwtIncompatible("TODO") public static long mod(long x, long m) { if (m <= 0) { throw new ArithmeticException("Modulus must be positive"); } long result = x % m; return (result >= 0) ? result : result + m; } /** * Returns the greatest common divisor of {@code a, b}. Returns {@code 0} if * {@code a == 0 && b == 0}. * * @throws IllegalArgumentException if {@code a < 0} or {@code b < 0} */ public static long gcd(long a, long b) { /* * The reason we require both arguments to be >= 0 is because otherwise, what do you return on * gcd(0, Long.MIN_VALUE)? BigInteger.gcd would return positive 2^63, but positive 2^63 isn't * an int. */ checkNonNegative("a", a); checkNonNegative("b", b); if (a == 0) { // 0 % b == 0, so b divides a, but the converse doesn't hold. // BigInteger.gcd is consistent with this decision. return b; } else if (b == 0) { return a; // similar logic } /* * Uses the binary GCD algorithm; see http://en.wikipedia.org/wiki/Binary_GCD_algorithm. * This is >60% faster than the Euclidean algorithm in benchmarks. */ int aTwos = Long.numberOfTrailingZeros(a); a >>= aTwos; // divide out all 2s int bTwos = Long.numberOfTrailingZeros(b); b >>= bTwos; // divide out all 2s while (a != b) { // both a, b are odd // The key to the binary GCD algorithm is as follows: // Both a and b are odd. Assume a > b; then gcd(a - b, b) = gcd(a, b). // But in gcd(a - b, b), a - b is even and b is odd, so we can divide out powers of two. // We bend over backwards to avoid branching, adapting a technique from // http://graphics.stanford.edu/~seander/bithacks.html#IntegerMinOrMax long delta = a - b; // can't overflow, since a and b are nonnegative long minDeltaOrZero = delta & (delta >> (Long.SIZE - 1)); // equivalent to Math.min(delta, 0) a = delta - minDeltaOrZero - minDeltaOrZero; // sets a to Math.abs(a - b) // a is now nonnegative and even b += minDeltaOrZero; // sets b to min(old a, b) a >>= Long.numberOfTrailingZeros(a); // divide out all 2s, since 2 doesn't divide b } return a << min(aTwos, bTwos); } /** * Returns the sum of {@code a} and {@code b}, provided it does not overflow. * * @throws ArithmeticException if {@code a + b} overflows in signed {@code long} arithmetic */ @GwtIncompatible("TODO") public static long checkedAdd(long a, long b) { long result = a + b; checkNoOverflow((a ^ b) < 0 | (a ^ result) >= 0); return result; } /** * Returns the difference of {@code a} and {@code b}, provided it does not overflow. * * @throws ArithmeticException if {@code a - b} overflows in signed {@code long} arithmetic */ @GwtIncompatible("TODO") public static long checkedSubtract(long a, long b) { long result = a - b; checkNoOverflow((a ^ b) >= 0 | (a ^ result) >= 0); return result; } /** * Returns the product of {@code a} and {@code b}, provided it does not overflow. * * @throws ArithmeticException if {@code a * b} overflows in signed {@code long} arithmetic */ @GwtIncompatible("TODO") public static long checkedMultiply(long a, long b) { // Hacker's Delight, Section 2-12 int leadingZeros = Long.numberOfLeadingZeros(a) + Long.numberOfLeadingZeros(~a) + Long.numberOfLeadingZeros(b) + Long.numberOfLeadingZeros(~b); /* * If leadingZeros > Long.SIZE + 1 it's definitely fine, if it's < Long.SIZE it's definitely * bad. We do the leadingZeros check to avoid the division below if at all possible. * * Otherwise, if b == Long.MIN_VALUE, then the only allowed values of a are 0 and 1. We take * care of all a < 0 with their own check, because in particular, the case a == -1 will * incorrectly pass the division check below. * * In all other cases, we check that either a is 0 or the result is consistent with division. */ if (leadingZeros > Long.SIZE + 1) { return a * b; } checkNoOverflow(leadingZeros >= Long.SIZE); checkNoOverflow(a >= 0 | b != Long.MIN_VALUE); long result = a * b; checkNoOverflow(a == 0 || result / a == b); return result; } /** * Returns the {@code b} to the {@code k}th power, provided it does not overflow. * * @throws ArithmeticException if {@code b} to the {@code k}th power overflows in signed * {@code long} arithmetic */ @GwtIncompatible("TODO") public static long checkedPow(long b, int k) { checkNonNegative("exponent", k); if (b >= -2 & b <= 2) { switch ((int) b) { case 0: return (k == 0) ? 1 : 0; case 1: return 1; case (-1): return ((k & 1) == 0) ? 1 : -1; case 2: checkNoOverflow(k < Long.SIZE - 1); return 1L << k; case (-2): checkNoOverflow(k < Long.SIZE); return ((k & 1) == 0) ? (1L << k) : (-1L << k); default: throw new AssertionError(); } } long accum = 1; while (true) { switch (k) { case 0: return accum; case 1: return checkedMultiply(accum, b); default: if ((k & 1) != 0) { accum = checkedMultiply(accum, b); } k >>= 1; if (k > 0) { checkNoOverflow(b <= FLOOR_SQRT_MAX_LONG); b *= b; } } } } @VisibleForTesting static final long FLOOR_SQRT_MAX_LONG = 3037000499L; /** * Returns {@code n!}, that is, the product of the first {@code n} positive * integers, {@code 1} if {@code n == 0}, or {@link Long#MAX_VALUE} if the * result does not fit in a {@code long}. * * @throws IllegalArgumentException if {@code n < 0} */ @GwtIncompatible("TODO") public static long factorial(int n) { checkNonNegative("n", n); return (n < factorials.length) ? factorials[n] : Long.MAX_VALUE; } static final long[] factorials = { 1L, 1L, 1L * 2, 1L * 2 * 3, 1L * 2 * 3 * 4, 1L * 2 * 3 * 4 * 5, 1L * 2 * 3 * 4 * 5 * 6, 1L * 2 * 3 * 4 * 5 * 6 * 7, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18 * 19, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18 * 19 * 20 }; /** * Returns {@code n} choose {@code k}, also known as the binomial coefficient of {@code n} and * {@code k}, or {@link Long#MAX_VALUE} if the result does not fit in a {@code long}. * * @throws IllegalArgumentException if {@code n < 0}, {@code k < 0}, or {@code k > n} */ public static long binomial(int n, int k) { checkNonNegative("n", n); checkNonNegative("k", k); checkArgument(k <= n, "k (%s) > n (%s)", k, n); if (k > (n >> 1)) { k = n - k; } switch (k) { case 0: return 1; case 1: return n; default: if (n < factorials.length) { return factorials[n] / (factorials[k] * factorials[n - k]); } else if (k >= biggestBinomials.length || n > biggestBinomials[k]) { return Long.MAX_VALUE; } else if (k < biggestSimpleBinomials.length && n <= biggestSimpleBinomials[k]) { // guaranteed not to overflow long result = n--; for (int i = 2; i <= k; n--, i++) { result *= n; result /= i; } return result; } else { int nBits = LongMath.log2(n, RoundingMode.CEILING); long result = 1; long numerator = n--; long denominator = 1; int numeratorBits = nBits; // This is an upper bound on log2(numerator, ceiling). /* * We want to do this in long math for speed, but want to avoid overflow. We adapt the * technique previously used by BigIntegerMath: maintain separate numerator and * denominator accumulators, multiplying the fraction into result when near overflow. */ for (int i = 2; i <= k; i++, n--) { if (numeratorBits + nBits < Long.SIZE - 1) { // It's definitely safe to multiply into numerator and denominator. numerator *= n; denominator *= i; numeratorBits += nBits; } else { // It might not be safe to multiply into numerator and denominator, // so multiply (numerator / denominator) into result. result = multiplyFraction(result, numerator, denominator); numerator = n; denominator = i; numeratorBits = nBits; } } return multiplyFraction(result, numerator, denominator); } } } /** * Returns (x * numerator / denominator), which is assumed to come out to an integral value. */ static long multiplyFraction(long x, long numerator, long denominator) { if (x == 1) { return numerator / denominator; } long commonDivisor = gcd(x, denominator); x /= commonDivisor; denominator /= commonDivisor; // We know gcd(x, denominator) = 1, and x * numerator / denominator is exact, // so denominator must be a divisor of numerator. return x * (numerator / denominator); } /* * binomial(biggestBinomials[k], k) fits in a long, but not * binomial(biggestBinomials[k] + 1, k). */ static final int[] biggestBinomials = {Integer.MAX_VALUE, Integer.MAX_VALUE, Integer.MAX_VALUE, 3810779, 121977, 16175, 4337, 1733, 887, 534, 361, 265, 206, 169, 143, 125, 111, 101, 94, 88, 83, 79, 76, 74, 72, 70, 69, 68, 67, 67, 66, 66, 66, 66}; /* * binomial(biggestSimpleBinomials[k], k) doesn't need to use the slower GCD-based impl, * but binomial(biggestSimpleBinomials[k] + 1, k) does. */ @VisibleForTesting static final int[] biggestSimpleBinomials = {Integer.MAX_VALUE, Integer.MAX_VALUE, Integer.MAX_VALUE, 2642246, 86251, 11724, 3218, 1313, 684, 419, 287, 214, 169, 139, 119, 105, 95, 87, 81, 76, 73, 70, 68, 66, 64, 63, 62, 62, 61, 61, 61}; // These values were generated by using checkedMultiply to see when the simple multiply/divide // algorithm would lead to an overflow. static boolean fitsInInt(long x) { return (int) x == x; } /** * Returns the arithmetic mean of {@code x} and {@code y}, rounded toward * negative infinity. This method is resilient to overflow. * * @since 14.0 */ public static long mean(long x, long y) { // Efficient method for computing the arithmetic mean. // The alternative (x + y) / 2 fails for large values. // The alternative (x + y) >>> 1 fails for negative values. return (x & y) + ((x ^ y) >> 1); } private LongMath() {} }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy