All Downloads are FREE. Search and download functionalities are using the official Maven repository.

jersey.repackaged.jsr166e.DoubleMaxUpdater Maven / Gradle / Ivy

Go to download

Jersey JSR-166e Repackaged. See http://gee.cs.oswego.edu/dl/concurrency-interest/index.html

The newest version!
/*
 * Written by Doug Lea with assistance from members of JCP JSR-166
 * Expert Group and released to the public domain, as explained at
 * http://creativecommons.org/publicdomain/zero/1.0/
 */

package jersey.repackaged.jsr166e;

import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;

/**
 * One or more variables that together maintain a running {@code double}
 * maximum with initial value {@code Double.NEGATIVE_INFINITY}.  When
 * updates (method {@link #update}) are contended across threads, the
 * set of variables may grow dynamically to reduce contention.  Method
 * {@link #max} (or, equivalently, {@link #doubleValue}) returns the
 * current maximum across the variables maintaining updates.
 *
 * 

This class extends {@link Number}, but does not define * methods such as {@code equals}, {@code hashCode} and {@code * compareTo} because instances are expected to be mutated, and so are * not useful as collection keys. * *

jsr166e note: This class is targeted to be placed in * java.util.concurrent.atomic. * * @since 1.8 * @author Doug Lea */ public class DoubleMaxUpdater extends Striped64 implements Serializable { private static final long serialVersionUID = 7249069246863182397L; /** * Long representation of negative infinity. See class Double * internal documentation for explanation. */ private static final long MIN_AS_LONG = 0xfff0000000000000L; /** * Update function. See class DoubleAdder for rationale * for using conversions from/to long. */ final long fn(long v, long x) { return Double.longBitsToDouble(v) > Double.longBitsToDouble(x) ? v : x; } /** * Creates a new instance with initial value of {@code * Double.NEGATIVE_INFINITY}. */ public DoubleMaxUpdater() { base = MIN_AS_LONG; } /** * Updates the maximum to be at least the given value. * * @param x the value to update */ public void update(double x) { long lx = Double.doubleToRawLongBits(x); Cell[] as; long b, v; int[] hc; Cell a; int n; if ((as = cells) != null || (Double.longBitsToDouble(b = base) < x && !casBase(b, lx))) { boolean uncontended = true; if ((hc = threadHashCode.get()) == null || as == null || (n = as.length) < 1 || (a = as[(n - 1) & hc[0]]) == null || (Double.longBitsToDouble(v = a.value) < x && !(uncontended = a.cas(v, lx)))) retryUpdate(lx, hc, uncontended); } } /** * Returns the current maximum. The returned value is * NOT an atomic snapshot; invocation in the absence of * concurrent updates returns an accurate result, but concurrent * updates that occur while the value is being calculated might * not be incorporated. * * @return the maximum */ public double max() { Cell[] as = cells; double max = Double.longBitsToDouble(base); if (as != null) { int n = as.length; double v; for (int i = 0; i < n; ++i) { Cell a = as[i]; if (a != null && (v = Double.longBitsToDouble(a.value)) > max) max = v; } } return max; } /** * Resets variables maintaining updates to {@code * Double.NEGATIVE_INFINITY}. This method may be a useful * alternative to creating a new updater, but is only effective if * there are no concurrent updates. Because this method is * intrinsically racy, it should only be used when it is known * that no threads are concurrently updating. */ public void reset() { internalReset(MIN_AS_LONG); } /** * Equivalent in effect to {@link #max} followed by {@link * #reset}. This method may apply for example during quiescent * points between multithreaded computations. If there are * updates concurrent with this method, the returned value is * not guaranteed to be the final value occurring before * the reset. * * @return the maximum */ public double maxThenReset() { Cell[] as = cells; double max = Double.longBitsToDouble(base); base = MIN_AS_LONG; if (as != null) { int n = as.length; for (int i = 0; i < n; ++i) { Cell a = as[i]; if (a != null) { double v = Double.longBitsToDouble(a.value); a.value = MIN_AS_LONG; if (v > max) max = v; } } } return max; } /** * Returns the String representation of the {@link #max}. * @return the String representation of the {@link #max} */ public String toString() { return Double.toString(max()); } /** * Equivalent to {@link #max}. * * @return the max */ public double doubleValue() { return max(); } /** * Returns the {@link #max} as a {@code long} after a * narrowing primitive conversion. */ public long longValue() { return (long)max(); } /** * Returns the {@link #max} as an {@code int} after a * narrowing primitive conversion. */ public int intValue() { return (int)max(); } /** * Returns the {@link #max} as a {@code float} * after a narrowing primitive conversion. */ public float floatValue() { return (float)max(); } private void writeObject(ObjectOutputStream s) throws IOException { s.defaultWriteObject(); s.writeDouble(max()); } private void readObject(ObjectInputStream s) throws IOException, ClassNotFoundException { s.defaultReadObject(); busy = 0; cells = null; base = Double.doubleToRawLongBits(s.readDouble()); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy