org.glassfish.jersey.internal.util.collection.ConcurrentHashMapV8 Maven / Gradle / Ivy
Show all versions of jaxrs-ri Show documentation
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER.
*
* Copyright (c) 2013-2015 Oracle and/or its affiliates. All rights reserved.
*
* The contents of this file are subject to the terms of either the GNU
* General Public License Version 2 only ("GPL") or the Common Development
* and Distribution License("CDDL") (collectively, the "License"). You
* may not use this file except in compliance with the License. You can
* obtain a copy of the License at
* http://glassfish.java.net/public/CDDL+GPL_1_1.html
* or packager/legal/LICENSE.txt. See the License for the specific
* language governing permissions and limitations under the License.
*
* When distributing the software, include this License Header Notice in each
* file and include the License file at packager/legal/LICENSE.txt.
*
* GPL Classpath Exception:
* Oracle designates this particular file as subject to the "Classpath"
* exception as provided by Oracle in the GPL Version 2 section of the License
* file that accompanied this code.
*
* Modifications:
* If applicable, add the following below the License Header, with the fields
* enclosed by brackets [] replaced by your own identifying information:
* "Portions Copyright [year] [name of copyright owner]"
*
* Contributor(s):
* If you wish your version of this file to be governed by only the CDDL or
* only the GPL Version 2, indicate your decision by adding "[Contributor]
* elects to include this software in this distribution under the [CDDL or GPL
* Version 2] license." If you don't indicate a single choice of license, a
* recipient has the option to distribute your version of this file under
* either the CDDL, the GPL Version 2 or to extend the choice of license to
* its licensees as provided above. However, if you add GPL Version 2 code
* and therefore, elected the GPL Version 2 license, then the option applies
* only if the new code is made subject to such option by the copyright
* holder.
*/
/**
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/
package org.glassfish.jersey.internal.util.collection;
import java.io.ObjectStreamField;
import java.io.Serializable;
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import java.util.AbstractMap;
import java.util.Arrays;
import java.util.Collection;
import java.util.ConcurrentModificationException;
import java.util.Enumeration;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Set;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.locks.LockSupport;
import java.util.concurrent.locks.ReentrantLock;
/**
* A hash table supporting full concurrency of retrievals and
* high expected concurrency for updates. This class obeys the
* same functional specification as {@link java.util.Hashtable}, and
* includes versions of methods corresponding to each method of
* {@code Hashtable}. However, even though all operations are
* thread-safe, retrieval operations do not entail locking,
* and there is not any support for locking the entire table
* in a way that prevents all access. This class is fully
* interoperable with {@code Hashtable} in programs that rely on its
* thread safety but not on its synchronization details.
*
* Retrieval operations (including {@code get}) generally do not
* block, so may overlap with update operations (including {@code put}
* and {@code remove}). Retrievals reflect the results of the most
* recently completed update operations holding upon their
* onset. (More formally, an update operation for a given key bears a
* happens-before relation with any (non-null) retrieval for
* that key reporting the updated value.) For aggregate operations
* such as {@code putAll} and {@code clear}, concurrent retrievals may
* reflect insertion or removal of only some entries. Similarly,
* Iterators and Enumerations return elements reflecting the state of
* the hash table at some point at or since the creation of the
* iterator/enumeration. They do not throw {@link
* ConcurrentModificationException}. However, iterators are designed
* to be used by only one thread at a time. Bear in mind that the
* results of aggregate status methods including {@code size}, {@code
* isEmpty}, and {@code containsValue} are typically useful only when
* a map is not undergoing concurrent updates in other threads.
* Otherwise the results of these methods reflect transient states
* that may be adequate for monitoring or estimation purposes, but not
* for program control.
*
*
The table is dynamically expanded when there are too many
* collisions (i.e., keys that have distinct hash codes but fall into
* the same slot modulo the table size), with the expected average
* effect of maintaining roughly two bins per mapping (corresponding
* to a 0.75 load factor threshold for resizing). There may be much
* variance around this average as mappings are added and removed, but
* overall, this maintains a commonly accepted time/space tradeoff for
* hash tables. However, resizing this or any other kind of hash
* table may be a relatively slow operation. When possible, it is a
* good idea to provide a size estimate as an optional {@code
* initialCapacity} constructor argument. An additional optional
* {@code loadFactor} constructor argument provides a further means of
* customizing initial table capacity by specifying the table density
* to be used in calculating the amount of space to allocate for the
* given number of elements. Also, for compatibility with previous
* versions of this class, constructors may optionally specify an
* expected {@code concurrencyLevel} as an additional hint for
* internal sizing. Note that using many keys with exactly the same
* {@code hashCode()} is a sure way to slow down performance of any
* hash table. To ameliorate impact, when keys are {@link Comparable},
* this class may use comparison order among keys to help break ties.
*
*
A {@link Set} projection of a ConcurrentHashMapV8 may be created
* (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
* (using {@link #keySet(Object)} when only keys are of interest, and the
* mapped values are (perhaps transiently) not used or all take the
* same mapping value.
*
*
This class and its views and iterators implement all of the
* optional methods of the {@link Map} and {@link Iterator}
* interfaces.
*
*
Like {@link java.util.Hashtable} but unlike {@link HashMap}, this class
* does not allow {@code null} to be used as a key or value.
*
*
ConcurrentHashMapV8s support a set of sequential and parallel bulk
* operations that are designed
* to be safely, and often sensibly, applied even with maps that are
* being concurrently updated by other threads; for example, when
* computing a snapshot summary of the values in a shared registry.
* There are three kinds of operation, each with four forms, accepting
* functions with Keys, Values, Entries, and (Key, Value) arguments
* and/or return values. Because the elements of a ConcurrentHashMapV8
* are not ordered in any particular way, and may be processed in
* different orders in different parallel executions, the correctness
* of supplied functions should not depend on any ordering, or on any
* other objects or values that may transiently change while
* computation is in progress; and except for forEach actions, should
* ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
* objects do not support method {@code setValue}.
*
*
* - forEach: Perform a given action on each element.
* A variant form applies a given transformation on each element
* before performing the action.
*
* - search: Return the first available non-null result of
* applying a given function on each element; skipping further
* search when a result is found.
*
* - reduce: Accumulate each element. The supplied reduction
* function cannot rely on ordering (more formally, it should be
* both associative and commutative). There are five variants:
*
*
*
* - Plain reductions. (There is not a form of this method for
* (key, value) function arguments since there is no corresponding
* return type.)
*
* - Mapped reductions that accumulate the results of a given
* function applied to each element.
*
* - Reductions to scalar doubles, longs, and ints, using a
* given basis value.
*
*
*
*
*
* These bulk operations accept a {@code parallelismThreshold}
* argument. Methods proceed sequentially if the current map size is
* estimated to be less than the given threshold. Using a value of
* {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
* of {@code 1} results in maximal parallelism by partitioning into
* enough subtasks to fully utilize the {@code
* ForkJoinPool#commonPool()} that is used for all parallel
* computations. Normally, you would initially choose one of these
* extreme values, and then measure performance of using in-between
* values that trade off overhead versus throughput.
*
*
The concurrency properties of bulk operations follow
* from those of ConcurrentHashMapV8: Any non-null result returned
* from {@code get(key)} and related access methods bears a
* happens-before relation with the associated insertion or
* update. The result of any bulk operation reflects the
* composition of these per-element relations (but is not
* necessarily atomic with respect to the map as a whole unless it
* is somehow known to be quiescent). Conversely, because keys
* and values in the map are never null, null serves as a reliable
* atomic indicator of the current lack of any result. To
* maintain this property, null serves as an implicit basis for
* all non-scalar reduction operations. For the double, long, and
* int versions, the basis should be one that, when combined with
* any other value, returns that other value (more formally, it
* should be the identity element for the reduction). Most common
* reductions have these properties; for example, computing a sum
* with basis 0 or a minimum with basis MAX_VALUE.
*
*
Search and transformation functions provided as arguments
* should similarly return null to indicate the lack of any result
* (in which case it is not used). In the case of mapped
* reductions, this also enables transformations to serve as
* filters, returning null (or, in the case of primitive
* specializations, the identity basis) if the element should not
* be combined. You can create compound transformations and
* filterings by composing them yourself under this "null means
* there is nothing there now" rule before using them in search or
* reduce operations.
*
*
Methods accepting and/or returning Entry arguments maintain
* key-value associations. They may be useful for example when
* finding the key for the greatest value. Note that "plain" Entry
* arguments can be supplied using {@code new
* AbstractMap.SimpleEntry(k,v)}.
*
*
Bulk operations may complete abruptly, throwing an
* exception encountered in the application of a supplied
* function. Bear in mind when handling such exceptions that other
* concurrently executing functions could also have thrown
* exceptions, or would have done so if the first exception had
* not occurred.
*
*
Speedups for parallel compared to sequential forms are common
* but not guaranteed. Parallel operations involving brief functions
* on small maps may execute more slowly than sequential forms if the
* underlying work to parallelize the computation is more expensive
* than the computation itself. Similarly, parallelization may not
* lead to much actual parallelism if all processors are busy
* performing unrelated tasks.
*
*
All arguments to all task methods must be non-null.
*
*
jsr166e note: During transition, this class
* uses nested functional interfaces with different names but the
* same forms as those expected for JDK8.
*
*
This class is a member of the
*
* Java Collections Framework.
*
* @param the type of keys maintained by this map
* @param the type of mapped values
* @author Doug Lea
*/
class ConcurrentHashMapV8 extends AbstractMap
implements ConcurrentMap, Serializable {
private static final long serialVersionUID = 7249069246763182397L;
/*
* Overview:
*
* The primary design goal of this hash table is to maintain
* concurrent readability (typically method get(), but also
* iterators and related methods) while minimizing update
* contention. Secondary goals are to keep space consumption about
* the same or better than java.util.HashMap, and to support high
* initial insertion rates on an empty table by many threads.
*
* This map usually acts as a binned (bucketed) hash table. Each
* key-value mapping is held in a Node. Most nodes are instances
* of the basic Node class with hash, key, value, and next
* fields. However, various subclasses exist: TreeNodes are
* arranged in balanced trees, not lists. TreeBins hold the roots
* of sets of TreeNodes. ForwardingNodes are placed at the heads
* of bins during resizing. ReservationNodes are used as
* placeholders while establishing values in computeIfAbsent and
* related methods. The types TreeBin, ForwardingNode, and
* ReservationNode do not hold normal user keys, values, or
* hashes, and are readily distinguishable during search etc
* because they have negative hash fields and null key and value
* fields. (These special nodes are either uncommon or transient,
* so the impact of carrying around some unused fields is
* insignificant.)
*
* The table is lazily initialized to a power-of-two size upon the
* first insertion. Each bin in the table normally contains a
* list of Nodes (most often, the list has only zero or one Node).
* Table accesses require volatile/atomic reads, writes, and
* CASes. Because there is no other way to arrange this without
* adding further indirections, we use intrinsics
* (sun.misc.Unsafe) operations.
*
* We use the top (sign) bit of Node hash fields for control
* purposes -- it is available anyway because of addressing
* constraints. Nodes with negative hash fields are specially
* handled or ignored in map methods.
*
* Insertion (via put or its variants) of the first node in an
* empty bin is performed by just CASing it to the bin. This is
* by far the most common case for put operations under most
* key/hash distributions. Other update operations (insert,
* delete, and replace) require locks. We do not want to waste
* the space required to associate a distinct lock object with
* each bin, so instead use the first node of a bin list itself as
* a lock. Locking support for these locks relies on builtin
* "synchronized" monitors.
*
* Using the first node of a list as a lock does not by itself
* suffice though: When a node is locked, any update must first
* validate that it is still the first node after locking it, and
* retry if not. Because new nodes are always appended to lists,
* once a node is first in a bin, it remains first until deleted
* or the bin becomes invalidated (upon resizing).
*
* The main disadvantage of per-bin locks is that other update
* operations on other nodes in a bin list protected by the same
* lock can stall, for example when user equals() or mapping
* functions take a long time. However, statistically, under
* random hash codes, this is not a common problem. Ideally, the
* frequency of nodes in bins follows a Poisson distribution
* (http://en.wikipedia.org/wiki/Poisson_distribution) with a
* parameter of about 0.5 on average, given the resizing threshold
* of 0.75, although with a large variance because of resizing
* granularity. Ignoring variance, the expected occurrences of
* list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
* first values are:
*
* 0: 0.60653066
* 1: 0.30326533
* 2: 0.07581633
* 3: 0.01263606
* 4: 0.00157952
* 5: 0.00015795
* 6: 0.00001316
* 7: 0.00000094
* 8: 0.00000006
* more: less than 1 in ten million
*
* Lock contention probability for two threads accessing distinct
* elements is roughly 1 / (8 * #elements) under random hashes.
*
* Actual hash code distributions encountered in practice
* sometimes deviate significantly from uniform randomness. This
* includes the case when N > (1<<30), so some keys MUST collide.
* Similarly for dumb or hostile usages in which multiple keys are
* designed to have identical hash codes or ones that differs only
* in masked-out high bits. So we use a secondary strategy that
* applies when the number of nodes in a bin exceeds a
* threshold. These TreeBins use a balanced tree to hold nodes (a
* specialized form of red-black trees), bounding search time to
* O(log N). Each search step in a TreeBin is at least twice as
* slow as in a regular list, but given that N cannot exceed
* (1<<64) (before running out of addresses) this bounds search
* steps, lock hold times, etc, to reasonable constants (roughly
* 100 nodes inspected per operation worst case) so long as keys
* are Comparable (which is very common -- String, Long, etc).
* TreeBin nodes (TreeNodes) also maintain the same "next"
* traversal pointers as regular nodes, so can be traversed in
* iterators in the same way.
*
* The table is resized when occupancy exceeds a percentage
* threshold (nominally, 0.75, but see below). Any thread
* noticing an overfull bin may assist in resizing after the
* initiating thread allocates and sets up the replacement
* array. However, rather than stalling, these other threads may
* proceed with insertions etc. The use of TreeBins shields us
* from the worst case effects of overfilling while resizes are in
* progress. Resizing proceeds by transferring bins, one by one,
* from the table to the next table. To enable concurrency, the
* next table must be (incrementally) prefilled with place-holders
* serving as reverse forwarders to the old table. Because we are
* using power-of-two expansion, the elements from each bin must
* either stay at same index, or move with a power of two
* offset. We eliminate unnecessary node creation by catching
* cases where old nodes can be reused because their next fields
* won't change. On average, only about one-sixth of them need
* cloning when a table doubles. The nodes they replace will be
* garbage collectable as soon as they are no longer referenced by
* any reader thread that may be in the midst of concurrently
* traversing table. Upon transfer, the old table bin contains
* only a special forwarding node (with hash field "MOVED") that
* contains the next table as its key. On encountering a
* forwarding node, access and update operations restart, using
* the new table.
*
* Each bin transfer requires its bin lock, which can stall
* waiting for locks while resizing. However, because other
* threads can join in and help resize rather than contend for
* locks, average aggregate waits become shorter as resizing
* progresses. The transfer operation must also ensure that all
* accessible bins in both the old and new table are usable by any
* traversal. This is arranged by proceeding from the last bin
* (table.length - 1) up towards the first. Upon seeing a
* forwarding node, traversals (see class Traverser) arrange to
* move to the new table without revisiting nodes. However, to
* ensure that no intervening nodes are skipped, bin splitting can
* only begin after the associated reverse-forwarders are in
* place.
*
* The traversal scheme also applies to partial traversals of
* ranges of bins (via an alternate Traverser constructor)
* to support partitioned aggregate operations. Also, read-only
* operations give up if ever forwarded to a null table, which
* provides support for shutdown-style clearing, which is also not
* currently implemented.
*
* Lazy table initialization minimizes footprint until first use,
* and also avoids resizings when the first operation is from a
* putAll, constructor with map argument, or deserialization.
* These cases attempt to override the initial capacity settings,
* but harmlessly fail to take effect in cases of races.
*
* The element count is maintained using a specialization of
* LongAdder. We need to incorporate a specialization rather than
* just use a LongAdder in order to access implicit
* contention-sensing that leads to creation of multiple
* CounterCells. The counter mechanics avoid contention on
* updates but can encounter cache thrashing if read too
* frequently during concurrent access. To avoid reading so often,
* resizing under contention is attempted only upon adding to a
* bin already holding two or more nodes. Under uniform hash
* distributions, the probability of this occurring at threshold
* is around 13%, meaning that only about 1 in 8 puts check
* threshold (and after resizing, many fewer do so).
*
* TreeBins use a special form of comparison for search and
* related operations (which is the main reason we cannot use
* existing collections such as TreeMaps). TreeBins contain
* Comparable elements, but may contain others, as well as
* elements that are Comparable but not necessarily Comparable for
* the same T, so we cannot invoke compareTo among them. To handle
* this, the tree is ordered primarily by hash value, then by
* Comparable.compareTo order if applicable. On lookup at a node,
* if elements are not comparable or compare as 0 then both left
* and right children may need to be searched in the case of tied
* hash values. (This corresponds to the full list search that
* would be necessary if all elements were non-Comparable and had
* tied hashes.) On insertion, to keep a total ordering (or as
* close as is required here) across rebalancings, we compare
* classes and identityHashCodes as tie-breakers. The red-black
* balancing code is updated from pre-jdk-collections
* (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
* based in turn on Cormen, Leiserson, and Rivest "Introduction to
* Algorithms" (CLR).
*
* TreeBins also require an additional locking mechanism. While
* list traversal is always possible by readers even during
* updates, tree traversal is not, mainly because of tree-rotations
* that may change the root node and/or its linkages. TreeBins
* include a simple read-write lock mechanism parasitic on the
* main bin-synchronization strategy: Structural adjustments
* associated with an insertion or removal are already bin-locked
* (and so cannot conflict with other writers) but must wait for
* ongoing readers to finish. Since there can be only one such
* waiter, we use a simple scheme using a single "waiter" field to
* block writers. However, readers need never block. If the root
* lock is held, they proceed along the slow traversal path (via
* next-pointers) until the lock becomes available or the list is
* exhausted, whichever comes first. These cases are not fast, but
* maximize aggregate expected throughput.
*
* Maintaining API and serialization compatibility with previous
* versions of this class introduces several oddities. Mainly: We
* leave untouched but unused constructor arguments refering to
* concurrencyLevel. We accept a loadFactor constructor argument,
* but apply it only to initial table capacity (which is the only
* time that we can guarantee to honor it.) We also declare an
* unused "Segment" class that is instantiated in minimal form
* only when serializing.
*
* Also, solely for compatibility with previous versions of this
* class, it extends AbstractMap, even though all of its methods
* are overridden, so it is just useless baggage.
*
* This file is organized to make things a little easier to follow
* while reading than they might otherwise: First the main static
* declarations and utilities, then fields, then main public
* methods (with a few factorings of multiple public methods into
* internal ones), then sizing methods, trees, traversers, and
* bulk operations.
*/
/* ---------------- Constants -------------- */
/**
* The largest possible table capacity. This value must be
* exactly 1<<30 to stay within Java array allocation and indexing
* bounds for power of two table sizes, and is further required
* because the top two bits of 32bit hash fields are used for
* control purposes.
*/
private static final int MAXIMUM_CAPACITY = 1 << 30;
/**
* The default initial table capacity. Must be a power of 2
* (i.e., at least 1) and at most MAXIMUM_CAPACITY.
*/
private static final int DEFAULT_CAPACITY = 16;
/**
* The largest possible (non-power of two) array size.
* Needed by toArray and related methods.
*/
static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
/**
* The default concurrency level for this table. Unused but
* defined for compatibility with previous versions of this class.
*/
private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
/**
* The load factor for this table. Overrides of this value in
* constructors affect only the initial table capacity. The
* actual floating point value isn't normally used -- it is
* simpler to use expressions such as {@code n - (n >>> 2)} for
* the associated resizing threshold.
*/
private static final float LOAD_FACTOR = 0.75f;
/**
* The bin count threshold for using a tree rather than list for a
* bin. Bins are converted to trees when adding an element to a
* bin with at least this many nodes. The value must be greater
* than 2, and should be at least 8 to mesh with assumptions in
* tree removal about conversion back to plain bins upon
* shrinkage.
*/
static final int TREEIFY_THRESHOLD = 8;
/**
* The bin count threshold for untreeifying a (split) bin during a
* resize operation. Should be less than TREEIFY_THRESHOLD, and at
* most 6 to mesh with shrinkage detection under removal.
*/
static final int UNTREEIFY_THRESHOLD = 6;
/**
* The smallest table capacity for which bins may be treeified.
* (Otherwise the table is resized if too many nodes in a bin.)
* The value should be at least 4 * TREEIFY_THRESHOLD to avoid
* conflicts between resizing and treeification thresholds.
*/
static final int MIN_TREEIFY_CAPACITY = 64;
/**
* Minimum number of rebinnings per transfer step. Ranges are
* subdivided to allow multiple resizer threads. This value
* serves as a lower bound to avoid resizers encountering
* excessive memory contention. The value should be at least
* DEFAULT_CAPACITY.
*/
private static final int MIN_TRANSFER_STRIDE = 16;
/*
* Encodings for Node hash fields. See above for explanation.
*/
static final int MOVED = -1; // hash for forwarding nodes
static final int TREEBIN = -2; // hash for roots of trees
static final int RESERVED = -3; // hash for transient reservations
static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
/**
* Number of CPUS, to place bounds on some sizings
*/
static final int NCPU = Runtime.getRuntime().availableProcessors();
/**
* For serialization compatibility.
*/
private static final ObjectStreamField[] serialPersistentFields = {
new ObjectStreamField("segments", Segment[].class),
new ObjectStreamField("segmentMask", Integer.TYPE),
new ObjectStreamField("segmentShift", Integer.TYPE)
};
/* ---------------- Nodes -------------- */
/**
* Key-value entry. This class is never exported out as a
* user-mutable Map.Entry (i.e., one supporting setValue; see
* MapEntry below), but can be used for read-only traversals used
* in bulk tasks. Subclasses of Node with a negative hash field
* are special, and contain null keys and values (but are never
* exported). Otherwise, keys and vals are never null.
*/
static class Node implements Map.Entry {
final int hash;
final K key;
volatile V val;
volatile Node next;
Node(final int hash, final K key, final V val, final Node next) {
this.hash = hash;
this.key = key;
this.val = val;
this.next = next;
}
public final K getKey() {
return key;
}
public final V getValue() {
return val;
}
public final int hashCode() {
return key.hashCode() ^ val.hashCode();
}
public final String toString() {
return key + "=" + val;
}
public final V setValue(final V value) {
throw new UnsupportedOperationException();
}
public final boolean equals(final Object o) {
final Object k;
final Object v;
final Object u;
final Map.Entry, ?> e;
return ((o instanceof Map.Entry) &&
(k = (e = (Map.Entry, ?>) o).getKey()) != null &&
(v = e.getValue()) != null &&
(k == key || k.equals(key)) &&
(v == (u = val) || v.equals(u)));
}
/**
* Virtualized support for map.get(); overridden in subclasses.
*/
Node find(final int h, final Object k) {
Node e = this;
if (k != null) {
do {
final K ek;
if (e.hash == h &&
((ek = e.key) == k || (ek != null && k.equals(ek))))
return e;
} while ((e = e.next) != null);
}
return null;
}
}
/* ---------------- Static utilities -------------- */
/**
* Spreads (XORs) higher bits of hash to lower and also forces top
* bit to 0. Because the table uses power-of-two masking, sets of
* hashes that vary only in bits above the current mask will
* always collide. (Among known examples are sets of Float keys
* holding consecutive whole numbers in small tables.) So we
* apply a transform that spreads the impact of higher bits
* downward. There is a tradeoff between speed, utility, and
* quality of bit-spreading. Because many common sets of hashes
* are already reasonably distributed (so don't benefit from
* spreading), and because we use trees to handle large sets of
* collisions in bins, we just XOR some shifted bits in the
* cheapest possible way to reduce systematic lossage, as well as
* to incorporate impact of the highest bits that would otherwise
* never be used in index calculations because of table bounds.
*/
static final int spread(final int h) {
return (h ^ (h >>> 16)) & HASH_BITS;
}
/**
* Returns a power of two table size for the given desired capacity.
* See Hackers Delight, sec 3.2
*/
private static final int tableSizeFor(final int c) {
int n = c - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
/**
* Returns x's Class if it is of the form "class C implements
* Comparable", else null.
*/
static Class> comparableClassFor(final Object x) {
if (x instanceof Comparable) {
final Class> c;
final Type[] ts;
Type[] as;
Type t;
ParameterizedType p;
if ((c = x.getClass()) == String.class) // bypass checks
return c;
if ((ts = c.getGenericInterfaces()) != null) {
for (int i = 0; i < ts.length; ++i) {
if (((t = ts[i]) instanceof ParameterizedType) &&
((p = (ParameterizedType) t).getRawType() ==
Comparable.class) &&
(as = p.getActualTypeArguments()) != null &&
as.length == 1 && as[0] == c) // type arg is c
return c;
}
}
}
return null;
}
/**
* Returns k.compareTo(x) if x matches kc (k's screened comparable
* class), else 0.
*/
@SuppressWarnings({"rawtypes", "unchecked"}) // for cast to Comparable
static int compareComparables(final Class> kc, final Object k, final Object x) {
return (x == null || x.getClass() != kc ? 0 :
((Comparable) k).compareTo(x));
}
/* ---------------- Table element access -------------- */
/*
* Volatile access methods are used for table elements as well as
* elements of in-progress next table while resizing. All uses of
* the tab arguments must be null checked by callers. All callers
* also paranoically precheck that tab's length is not zero (or an
* equivalent check), thus ensuring that any index argument taking
* the form of a hash value anded with (length - 1) is a valid
* index. Note that, to be correct wrt arbitrary concurrency
* errors by users, these checks must operate on local variables,
* which accounts for some odd-looking inline assignments below.
* Note that calls to setTabAt always occur within locked regions,
* and so in principle require only release ordering, not need
* full volatile semantics, but are currently coded as volatile
* writes to be conservative.
*/
@SuppressWarnings("unchecked")
static final Node tabAt(final Node[] tab, final int i) {
return (Node) U.getObjectVolatile(tab, ((long) i << ASHIFT) + ABASE);
}
static final boolean casTabAt(final Node[] tab, final int i,
final Node c, final Node v) {
return U.compareAndSwapObject(tab, ((long) i << ASHIFT) + ABASE, c, v);
}
static final void setTabAt(final Node[] tab, final int i, final Node v) {
U.putObjectVolatile(tab, ((long) i << ASHIFT) + ABASE, v);
}
/* ---------------- Fields -------------- */
/**
* The array of bins. Lazily initialized upon first insertion.
* Size is always a power of two. Accessed directly by iterators.
*/
transient volatile Node[] table;
/**
* The next table to use; non-null only while resizing.
*/
private transient volatile Node[] nextTable;
/**
* Base counter value, used mainly when there is no contention,
* but also as a fallback during table initialization
* races. Updated via CAS.
*/
private transient volatile long baseCount;
/**
* Table initialization and resizing control. When negative, the
* table is being initialized or resized: -1 for initialization,
* else -(1 + the number of active resizing threads). Otherwise,
* when table is null, holds the initial table size to use upon
* creation, or 0 for default. After initialization, holds the
* next element count value upon which to resize the table.
*/
private transient volatile int sizeCtl;
/**
* The next table index (plus one) to split while resizing.
*/
private transient volatile int transferIndex;
/**
* The least available table index to split while resizing.
*/
private transient volatile int transferOrigin;
/**
* Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
*/
private transient volatile int cellsBusy;
/**
* Table of counter cells. When non-null, size is a power of 2.
*/
private transient volatile CounterCell[] counterCells;
// views
private transient KeySetView keySet;
private transient ValuesView values;
private transient EntrySetView entrySet;
/* ---------------- Public operations -------------- */
/**
* Creates a new, empty map with the default initial table size (16).
*/
ConcurrentHashMapV8() {
}
/**
* Creates a new, empty map with an initial table size
* accommodating the specified number of elements without the need
* to dynamically resize.
*
* @param initialCapacity The implementation performs internal
* sizing to accommodate this many elements.
* @throws IllegalArgumentException if the initial capacity of
* elements is negative
*/
ConcurrentHashMapV8(final int initialCapacity) {
if (initialCapacity < 0)
throw new IllegalArgumentException();
final int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
MAXIMUM_CAPACITY :
tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
this.sizeCtl = cap;
}
/**
* Creates a new map with the same mappings as the given map.
*
* @param m the map
*/
ConcurrentHashMapV8(final Map extends K, ? extends V> m) {
this.sizeCtl = DEFAULT_CAPACITY;
putAll(m);
}
/**
* Creates a new, empty map with an initial table size based on
* the given number of elements ({@code initialCapacity}) and
* initial table density ({@code loadFactor}).
*
* @param initialCapacity the initial capacity. The implementation
* performs internal sizing to accommodate this many elements,
* given the specified load factor.
* @param loadFactor the load factor (table density) for
* establishing the initial table size
* @throws IllegalArgumentException if the initial capacity of
* elements is negative or the load factor is nonpositive
* @since 1.6
*/
ConcurrentHashMapV8(final int initialCapacity, final float loadFactor) {
this(initialCapacity, loadFactor, 1);
}
/**
* Creates a new, empty map with an initial table size based on
* the given number of elements ({@code initialCapacity}), table
* density ({@code loadFactor}), and number of concurrently
* updating threads ({@code concurrencyLevel}).
*
* @param initialCapacity the initial capacity. The implementation
* performs internal sizing to accommodate this many elements,
* given the specified load factor.
* @param loadFactor the load factor (table density) for
* establishing the initial table size
* @param concurrencyLevel the estimated number of concurrently
* updating threads. The implementation may use this value as
* a sizing hint.
* @throws IllegalArgumentException if the initial capacity is
* negative or the load factor or concurrencyLevel are
* nonpositive
*/
ConcurrentHashMapV8(int initialCapacity,
final float loadFactor, final int concurrencyLevel) {
if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
throw new IllegalArgumentException();
if (initialCapacity < concurrencyLevel) // Use at least as many bins
initialCapacity = concurrencyLevel; // as estimated threads
final long size = (long) (1.0 + (long) initialCapacity / loadFactor);
final int cap = (size >= (long) MAXIMUM_CAPACITY) ?
MAXIMUM_CAPACITY : tableSizeFor((int) size);
this.sizeCtl = cap;
}
// Original (since JDK1.2) Map methods
/**
* {@inheritDoc}
*/
public int size() {
final long n = sumCount();
return ((n < 0L) ? 0 :
(n > (long) Integer.MAX_VALUE) ? Integer.MAX_VALUE :
(int) n);
}
/**
* {@inheritDoc}
*/
public boolean isEmpty() {
return sumCount() <= 0L; // ignore transient negative values
}
/**
* Returns the value to which the specified key is mapped,
* or {@code null} if this map contains no mapping for the key.
*
* More formally, if this map contains a mapping from a key
* {@code k} to a value {@code v} such that {@code key.equals(k)},
* then this method returns {@code v}; otherwise it returns
* {@code null}. (There can be at most one such mapping.)
*
* @throws NullPointerException if the specified key is null
*/
public V get(final Object key) {
final Node[] tab;
Node e;
final Node p;
final int n;
final int eh;
K ek;
final int h = spread(key.hashCode());
if ((tab = table) != null && (n = tab.length) > 0 &&
(e = tabAt(tab, (n - 1) & h)) != null) {
if ((eh = e.hash) == h) {
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
} else if (eh < 0)
return (p = e.find(h, key)) != null ? p.val : null;
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}
/**
* Tests if the specified object is a key in this table.
*
* @param key possible key
* @return {@code true} if and only if the specified object
* is a key in this table, as determined by the
* {@code equals} method; {@code false} otherwise
* @throws NullPointerException if the specified key is null
*/
public boolean containsKey(final Object key) {
return get(key) != null;
}
/**
* Returns {@code true} if this map maps one or more keys to the
* specified value. Note: This method may require a full traversal
* of the map, and is much slower than method {@code containsKey}.
*
* @param value value whose presence in this map is to be tested
* @return {@code true} if this map maps one or more keys to the
* specified value
* @throws NullPointerException if the specified value is null
*/
public boolean containsValue(final Object value) {
if (value == null)
throw new NullPointerException();
final Node[] t;
if ((t = table) != null) {
final Traverser it = new Traverser(t, t.length, 0, t.length);
for (Node p; (p = it.advance()) != null; ) {
final V v;
if ((v = p.val) == value || (v != null && value.equals(v)))
return true;
}
}
return false;
}
/**
* Maps the specified key to the specified value in this table.
* Neither the key nor the value can be null.
*
* The value can be retrieved by calling the {@code get} method
* with a key that is equal to the original key.
*
* @param key key with which the specified value is to be associated
* @param value value to be associated with the specified key
* @return the previous value associated with {@code key}, or
* {@code null} if there was no mapping for {@code key}
* @throws NullPointerException if the specified key or value is null
*/
public V put(final K key, final V value) {
return putVal(key, value, false);
}
/**
* Implementation for put and putIfAbsent
*/
final V putVal(final K key, final V value, final boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException();
final int hash = spread(key.hashCode());
int binCount = 0;
for (Node[] tab = table; ; ) {
final Node f;
final int n;
final int i;
final int fh;
if (tab == null || (n = tab.length) == 0)
tab = initTable();
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
if (casTabAt(tab, i, null,
new Node(hash, key, value, null)))
break; // no lock when adding to empty bin
} else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
else {
V oldVal = null;
synchronized (f) {
if (tabAt(tab, i) == f) {
if (fh >= 0) {
binCount = 1;
for (Node e = f; ; ++binCount) {
final K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
final Node pred = e;
if ((e = e.next) == null) {
pred.next = new Node(hash, key,
value, null);
break;
}
}
} else if (f instanceof TreeBin) {
final Node p;
binCount = 2;
if ((p = ((TreeBin) f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
if (binCount != 0) {
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
addCount(1L, binCount);
return null;
}
/**
* Copies all of the mappings from the specified map to this one.
* These mappings replace any mappings that this map had for any of the
* keys currently in the specified map.
*
* @param m mappings to be stored in this map
*/
public void putAll(final Map extends K, ? extends V> m) {
tryPresize(m.size());
for (final Map.Entry extends K, ? extends V> e : m.entrySet())
putVal(e.getKey(), e.getValue(), false);
}
/**
* Removes the key (and its corresponding value) from this map.
* This method does nothing if the key is not in the map.
*
* @param key the key that needs to be removed
* @return the previous value associated with {@code key}, or
* {@code null} if there was no mapping for {@code key}
* @throws NullPointerException if the specified key is null
*/
public V remove(final Object key) {
return replaceNode(key, null, null);
}
/**
* Implementation for the four public remove/replace methods:
* Replaces node value with v, conditional upon match of cv if
* non-null. If resulting value is null, delete.
*/
final V replaceNode(final Object key, final V value, final Object cv) {
final int hash = spread(key.hashCode());
for (Node[] tab = table; ; ) {
final Node f;
final int n;
final int i;
final int fh;
if (tab == null || (n = tab.length) == 0 ||
(f = tabAt(tab, i = (n - 1) & hash)) == null)
break;
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
else {
V oldVal = null;
boolean validated = false;
synchronized (f) {
if (tabAt(tab, i) == f) {
if (fh >= 0) {
validated = true;
for (Node e = f, pred = null; ; ) {
final K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
final V ev = e.val;
if (cv == null || cv == ev ||
(ev != null && cv.equals(ev))) {
oldVal = ev;
if (value != null)
e.val = value;
else if (pred != null)
pred.next = e.next;
else
setTabAt(tab, i, e.next);
}
break;
}
pred = e;
if ((e = e.next) == null)
break;
}
} else if (f instanceof TreeBin) {
validated = true;
final TreeBin t = (TreeBin) f;
final TreeNode r;
final TreeNode p;
if ((r = t.root) != null &&
(p = r.findTreeNode(hash, key, null)) != null) {
final V pv = p.val;
if (cv == null || cv == pv ||
(pv != null && cv.equals(pv))) {
oldVal = pv;
if (value != null)
p.val = value;
else if (t.removeTreeNode(p))
setTabAt(tab, i, untreeify(t.first));
}
}
}
}
}
if (validated) {
if (oldVal != null) {
if (value == null)
addCount(-1L, -1);
return oldVal;
}
break;
}
}
}
return null;
}
/**
* Removes all of the mappings from this map.
*/
public void clear() {
long delta = 0L; // negative number of deletions
int i = 0;
Node[] tab = table;
while (tab != null && i < tab.length) {
final int fh;
final Node f = tabAt(tab, i);
if (f == null)
++i;
else if ((fh = f.hash) == MOVED) {
tab = helpTransfer(tab, f);
i = 0; // restart
} else {
synchronized (f) {
if (tabAt(tab, i) == f) {
Node p = (fh >= 0 ? f :
(f instanceof TreeBin) ?
((TreeBin) f).first : null);
while (p != null) {
--delta;
p = p.next;
}
setTabAt(tab, i++, null);
}
}
}
}
if (delta != 0L)
addCount(delta, -1);
}
/**
* Returns a {@link Set} view of the keys contained in this map.
* The set is backed by the map, so changes to the map are
* reflected in the set, and vice-versa. The set supports element
* removal, which removes the corresponding mapping from this map,
* via the {@code Iterator.remove}, {@code Set.remove},
* {@code removeAll}, {@code retainAll}, and {@code clear}
* operations. It does not support the {@code add} or
* {@code addAll} operations.
*
* The view's {@code iterator} is a "weakly consistent" iterator
* that will never throw {@link ConcurrentModificationException},
* and guarantees to traverse elements as they existed upon
* construction of the iterator, and may (but is not guaranteed to)
* reflect any modifications subsequent to construction.
*
* @return the set view
*/
public KeySetView keySet() {
final KeySetView ks;
return (ks = keySet) != null ? ks : (keySet = new KeySetView(this, null));
}
/**
* Returns a {@link Collection} view of the values contained in this map.
* The collection is backed by the map, so changes to the map are
* reflected in the collection, and vice-versa. The collection
* supports element removal, which removes the corresponding
* mapping from this map, via the {@code Iterator.remove},
* {@code Collection.remove}, {@code removeAll},
* {@code retainAll}, and {@code clear} operations. It does not
* support the {@code add} or {@code addAll} operations.
*
* The view's {@code iterator} is a "weakly consistent" iterator
* that will never throw {@link ConcurrentModificationException},
* and guarantees to traverse elements as they existed upon
* construction of the iterator, and may (but is not guaranteed to)
* reflect any modifications subsequent to construction.
*
* @return the collection view
*/
public Collection values() {
final ValuesView vs;
return (vs = values) != null ? vs : (values = new ValuesView(this));
}
/**
* Returns a {@link Set} view of the mappings contained in this map.
* The set is backed by the map, so changes to the map are
* reflected in the set, and vice-versa. The set supports element
* removal, which removes the corresponding mapping from the map,
* via the {@code Iterator.remove}, {@code Set.remove},
* {@code removeAll}, {@code retainAll}, and {@code clear}
* operations.
*
* The view's {@code iterator} is a "weakly consistent" iterator
* that will never throw {@link ConcurrentModificationException},
* and guarantees to traverse elements as they existed upon
* construction of the iterator, and may (but is not guaranteed to)
* reflect any modifications subsequent to construction.
*
* @return the set view
*/
public Set> entrySet() {
final EntrySetView es;
return (es = entrySet) != null ? es : (entrySet = new EntrySetView(this));
}
/**
* Returns the hash code value for this {@link Map}, i.e.,
* the sum of, for each key-value pair in the map,
* {@code key.hashCode() ^ value.hashCode()}.
*
* @return the hash code value for this map
*/
public int hashCode() {
int h = 0;
final Node[] t;
if ((t = table) != null) {
final Traverser it = new Traverser(t, t.length, 0, t.length);
for (Node p; (p = it.advance()) != null; )
h += p.key.hashCode() ^ p.val.hashCode();
}
return h;
}
/**
* Returns a string representation of this map. The string
* representation consists of a list of key-value mappings (in no
* particular order) enclosed in braces ("{@code {}}"). Adjacent
* mappings are separated by the characters {@code ", "} (comma
* and space). Each key-value mapping is rendered as the key
* followed by an equals sign ("{@code =}") followed by the
* associated value.
*
* @return a string representation of this map
*/
public String toString() {
final Node[] t;
final int f = (t = table) == null ? 0 : t.length;
final Traverser it = new Traverser(t, f, 0, f);
final StringBuilder sb = new StringBuilder();
sb.append('{');
Node p;
if ((p = it.advance()) != null) {
for (; ; ) {
final K k = p.key;
final V v = p.val;
sb.append(k == this ? "(this Map)" : k);
sb.append('=');
sb.append(v == this ? "(this Map)" : v);
if ((p = it.advance()) == null)
break;
sb.append(',').append(' ');
}
}
return sb.append('}').toString();
}
/**
* Compares the specified object with this map for equality.
* Returns {@code true} if the given object is a map with the same
* mappings as this map. This operation may return misleading
* results if either map is concurrently modified during execution
* of this method.
*
* @param o object to be compared for equality with this map
* @return {@code true} if the specified object is equal to this map
*/
public boolean equals(final Object o) {
if (o != this) {
if (!(o instanceof Map))
return false;
final Map, ?> m = (Map, ?>) o;
final Node[] t;
final int f = (t = table) == null ? 0 : t.length;
final Traverser it = new Traverser(t, f, 0, f);
for (Node p; (p = it.advance()) != null; ) {
final V val = p.val;
final Object v = m.get(p.key);
if (v == null || (v != val && !v.equals(val)))
return false;
}
for (final Map.Entry, ?> e : m.entrySet()) {
final Object mk;
final Object mv;
final Object v;
if ((mk = e.getKey()) == null ||
(mv = e.getValue()) == null ||
(v = get(mk)) == null ||
(mv != v && !mv.equals(v)))
return false;
}
}
return true;
}
/**
* Stripped-down version of helper class used in previous version,
* declared for the sake of serialization compatibility
*/
static class Segment extends ReentrantLock implements Serializable {
private static final long serialVersionUID = 2249069246763182397L;
final float loadFactor;
Segment(final float lf) {
this.loadFactor = lf;
}
}
/**
* Saves the state of the {@code ConcurrentHashMapV8} instance to a
* stream (i.e., serializes it).
*
* @param s the stream
* @throws java.io.IOException if an I/O error occurs
* @serialData the key (Object) and value (Object)
* for each key-value mapping, followed by a null pair.
* The key-value mappings are emitted in no particular order.
*/
private void writeObject(final java.io.ObjectOutputStream s)
throws java.io.IOException {
// For serialization compatibility
// Emulate segment calculation from previous version of this class
int sshift = 0;
int ssize = 1;
while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
++sshift;
ssize <<= 1;
}
final int segmentShift = 32 - sshift;
final int segmentMask = ssize - 1;
@SuppressWarnings("unchecked") Segment[] segments = (Segment[])
new Segment, ?>[DEFAULT_CONCURRENCY_LEVEL];
for (int i = 0; i < segments.length; ++i)
segments[i] = new Segment(LOAD_FACTOR);
s.putFields().put("segments", segments);
s.putFields().put("segmentShift", segmentShift);
s.putFields().put("segmentMask", segmentMask);
s.writeFields();
final Node[] t;
if ((t = table) != null) {
final Traverser it = new Traverser(t, t.length, 0, t.length);
for (Node p; (p = it.advance()) != null; ) {
s.writeObject(p.key);
s.writeObject(p.val);
}
}
s.writeObject(null);
s.writeObject(null);
segments = null; // throw away
}
/**
* Reconstitutes the instance from a stream (that is, deserializes it).
*
* @param s the stream
* @throws ClassNotFoundException if the class of a serialized object
* could not be found
* @throws java.io.IOException if an I/O error occurs
*/
private void readObject(final java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
/*
* To improve performance in typical cases, we create nodes
* while reading, then place in table once size is known.
* However, we must also validate uniqueness and deal with
* overpopulated bins while doing so, which requires
* specialized versions of putVal mechanics.
*/
sizeCtl = -1; // force exclusion for table construction
s.defaultReadObject();
long size = 0L;
Node p = null;
for (; ; ) {
@SuppressWarnings("unchecked") final K k = (K) s.readObject();
@SuppressWarnings("unchecked") final V v = (V) s.readObject();
if (k != null && v != null) {
p = new Node(spread(k.hashCode()), k, v, p);
++size;
} else
break;
}
if (size == 0L)
sizeCtl = 0;
else {
final int n;
if (size >= (long) (MAXIMUM_CAPACITY >>> 1))
n = MAXIMUM_CAPACITY;
else {
final int sz = (int) size;
n = tableSizeFor(sz + (sz >>> 1) + 1);
}
@SuppressWarnings({"rawtypes", "unchecked"}) final
Node[] tab = (Node[]) new Node[n];
final int mask = n - 1;
long added = 0L;
while (p != null) {
boolean insertAtFront;
final Node next = p.next;
final Node first;
final int h = p.hash;
final int j = h & mask;
if ((first = tabAt(tab, j)) == null)
insertAtFront = true;
else {
final K k = p.key;
if (first.hash < 0) {
final TreeBin t = (TreeBin) first;
if (t.putTreeVal(h, k, p.val) == null)
++added;
insertAtFront = false;
} else {
int binCount = 0;
insertAtFront = true;
Node q;
K qk;
for (q = first; q != null; q = q.next) {
if (q.hash == h &&
((qk = q.key) == k ||
(qk != null && k.equals(qk)))) {
insertAtFront = false;
break;
}
++binCount;
}
if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
insertAtFront = false;
++added;
p.next = first;
TreeNode hd = null, tl = null;
for (q = p; q != null; q = q.next) {
final TreeNode t = new TreeNode
(q.hash, q.key, q.val, null, null);
if ((t.prev = tl) == null)
hd = t;
else
tl.next = t;
tl = t;
}
setTabAt(tab, j, new TreeBin(hd));
}
}
}
if (insertAtFront) {
++added;
p.next = first;
setTabAt(tab, j, p);
}
p = next;
}
table = tab;
sizeCtl = n - (n >>> 2);
baseCount = added;
}
}
// ConcurrentMap methods
/**
* {@inheritDoc}
*
* @return the previous value associated with the specified key,
* or {@code null} if there was no mapping for the key
* @throws NullPointerException if the specified key or value is null
*/
public V putIfAbsent(final K key, final V value) {
return putVal(key, value, true);
}
/**
* {@inheritDoc}
*
* @throws NullPointerException if the specified key is null
*/
public boolean remove(final Object key, final Object value) {
if (key == null)
throw new NullPointerException();
return value != null && replaceNode(key, null, value) != null;
}
/**
* {@inheritDoc}
*
* @throws NullPointerException if any of the arguments are null
*/
public boolean replace(final K key, final V oldValue, final V newValue) {
if (key == null || oldValue == null || newValue == null)
throw new NullPointerException();
return replaceNode(key, newValue, oldValue) != null;
}
/**
* {@inheritDoc}
*
* @return the previous value associated with the specified key,
* or {@code null} if there was no mapping for the key
* @throws NullPointerException if the specified key or value is null
*/
public V replace(final K key, final V value) {
if (key == null || value == null)
throw new NullPointerException();
return replaceNode(key, value, null);
}
// Overrides of JDK8+ Map extension method defaults
/**
* Returns the value to which the specified key is mapped, or the
* given default value if this map contains no mapping for the
* key.
*
* @param key the key whose associated value is to be returned
* @param defaultValue the value to return if this map contains
* no mapping for the given key
* @return the mapping for the key, if present; else the default value
* @throws NullPointerException if the specified key is null
*/
public V getOrDefault(final Object key, final V defaultValue) {
final V v;
return (v = get(key)) == null ? defaultValue : v;
}
// Hashtable legacy methods
/**
* Legacy method testing if some key maps into the specified value
* in this table. This method is identical in functionality to
* {@link #containsValue(Object)}, and exists solely to ensure
* full compatibility with class {@link java.util.Hashtable},
* which supported this method prior to introduction of the
* Java Collections framework.
*
* @param value a value to search for
* @return {@code true} if and only if some key maps to the
* {@code value} argument in this table as
* determined by the {@code equals} method;
* {@code false} otherwise
* @throws NullPointerException if the specified value is null
*/
@Deprecated
public boolean contains(final Object value) {
return containsValue(value);
}
/**
* Returns an enumeration of the keys in this table.
*
* @return an enumeration of the keys in this table
* @see #keySet()
*/
public Enumeration keys() {
final Node[] t;
final int f = (t = table) == null ? 0 : t.length;
return new KeyIterator(t, f, 0, f, this);
}
/**
* Returns an enumeration of the values in this table.
*
* @return an enumeration of the values in this table
* @see #values()
*/
public Enumeration elements() {
final Node[] t;
final int f = (t = table) == null ? 0 : t.length;
return new ValueIterator(t, f, 0, f, this);
}
// ConcurrentHashMapV8-only methods
/**
* Returns the number of mappings. This method should be used
* instead of {@link #size} because a ConcurrentHashMapV8 may
* contain more mappings than can be represented as an int. The
* value returned is an estimate; the actual count may differ if
* there are concurrent insertions or removals.
*
* @return the number of mappings
* @since 1.8
*/
public long mappingCount() {
final long n = sumCount();
return (n < 0L) ? 0L : n; // ignore transient negative values
}
/**
* Creates a new {@link Set} backed by a ConcurrentHashMapV8
* from the given type to {@code Boolean.TRUE}.
*
* @return the new set
* @since 1.8
*/
public static KeySetView newKeySet() {
return new KeySetView
(new ConcurrentHashMapV8(), Boolean.TRUE);
}
/**
* Creates a new {@link Set} backed by a ConcurrentHashMapV8
* from the given type to {@code Boolean.TRUE}.
*
* @param initialCapacity The implementation performs internal
* sizing to accommodate this many elements.
* @return the new set
* @throws IllegalArgumentException if the initial capacity of
* elements is negative
* @since 1.8
*/
public static KeySetView newKeySet(final int initialCapacity) {
return new KeySetView
(new ConcurrentHashMapV8(initialCapacity), Boolean.TRUE);
}
/**
* Returns a {@link Set} view of the keys in this map, using the
* given common mapped value for any additions (i.e., {@link
* Collection#add} and {@link Collection#addAll(Collection)}).
* This is of course only appropriate if it is acceptable to use
* the same value for all additions from this view.
*
* @param mappedValue the mapped value to use for any additions
* @return the set view
* @throws NullPointerException if the mappedValue is null
*/
public KeySetView keySet(final V mappedValue) {
if (mappedValue == null)
throw new NullPointerException();
return new KeySetView(this, mappedValue);
}
/* ---------------- Special Nodes -------------- */
/**
* A node inserted at head of bins during transfer operations.
*/
static final class ForwardingNode extends Node {
final Node[] nextTable;
ForwardingNode(final Node[] tab) {
super(MOVED, null, null, null);
this.nextTable = tab;
}
Node find(final int h, final Object k) {
// loop to avoid arbitrarily deep recursion on forwarding nodes
outer:
for (Node[] tab = nextTable; ; ) {
Node e;
final int n;
if (k == null || tab == null || (n = tab.length) == 0 ||
(e = tabAt(tab, (n - 1) & h)) == null)
return null;
for (; ; ) {
final int eh;
final K ek;
if ((eh = e.hash) == h &&
((ek = e.key) == k || (ek != null && k.equals(ek))))
return e;
if (eh < 0) {
if (e instanceof ForwardingNode) {
tab = ((ForwardingNode) e).nextTable;
continue outer;
} else
return e.find(h, k);
}
if ((e = e.next) == null)
return null;
}
}
}
}
/**
* A place-holder node used in computeIfAbsent and compute
*/
static final class ReservationNode extends Node {
ReservationNode() {
super(RESERVED, null, null, null);
}
Node find(final int h, final Object k) {
return null;
}
}
/* ---------------- Table Initialization and Resizing -------------- */
/**
* Initializes table, using the size recorded in sizeCtl.
*/
private final Node[] initTable() {
Node[] tab;
int sc;
while ((tab = table) == null || tab.length == 0) {
if ((sc = sizeCtl) < 0)
Thread.yield(); // lost initialization race; just spin
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
try {
if ((tab = table) == null || tab.length == 0) {
final int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
@SuppressWarnings({"rawtypes", "unchecked"}) final
Node[] nt = (Node[]) new Node[n];
table = tab = nt;
sc = n - (n >>> 2);
}
} finally {
sizeCtl = sc;
}
break;
}
}
return tab;
}
/**
* Adds to count, and if table is too small and not already
* resizing, initiates transfer. If already resizing, helps
* perform transfer if work is available. Rechecks occupancy
* after a transfer to see if another resize is already needed
* because resizings are lagging additions.
*
* @param x the count to add
* @param check if <0, don't check resize, if <= 1 only check if uncontended
*/
private final void addCount(final long x, final int check) {
final CounterCell[] as;
final long b;
long s;
if ((as = counterCells) != null ||
!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
final CounterHashCode hc;
final CounterCell a;
final long v;
final int m;
boolean uncontended = true;
if ((hc = threadCounterHashCode.get()) == null ||
as == null || (m = as.length - 1) < 0 ||
(a = as[m & hc.code]) == null ||
!(uncontended =
U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
fullAddCount(x, hc, uncontended);
return;
}
if (check <= 1)
return;
s = sumCount();
}
if (check >= 0) {
Node[] tab, nt;
int sc;
while (s >= (long) (sc = sizeCtl) && (tab = table) != null &&
tab.length < MAXIMUM_CAPACITY) {
if (sc < 0) {
if (sc == -1 || transferIndex <= transferOrigin ||
(nt = nextTable) == null)
break;
if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
transfer(tab, nt);
} else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
transfer(tab, null);
s = sumCount();
}
}
}
/**
* Helps transfer if a resize is in progress.
*/
final Node[] helpTransfer(final Node[] tab, final Node f) {
final Node[] nextTab;
final int sc;
if ((f instanceof ForwardingNode) &&
(nextTab = ((ForwardingNode) f).nextTable) != null) {
if (nextTab == nextTable && tab == table &&
transferIndex > transferOrigin && (sc = sizeCtl) < -1 &&
U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
transfer(tab, nextTab);
return nextTab;
}
return table;
}
/**
* Tries to presize table to accommodate the given number of elements.
*
* @param size number of elements (doesn't need to be perfectly accurate)
*/
private final void tryPresize(final int size) {
final int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
tableSizeFor(size + (size >>> 1) + 1);
int sc;
while ((sc = sizeCtl) >= 0) {
final Node[] tab = table;
int n;
if (tab == null || (n = tab.length) == 0) {
n = (sc > c) ? sc : c;
if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
try {
if (table == tab) {
@SuppressWarnings({"rawtypes", "unchecked"}) final
Node[] nt = (Node[]) new Node[n];
table = nt;
sc = n - (n >>> 2);
}
} finally {
sizeCtl = sc;
}
}
} else if (c <= sc || n >= MAXIMUM_CAPACITY)
break;
else if (tab == table &&
U.compareAndSwapInt(this, SIZECTL, sc, -2))
transfer(tab, null);
}
}
/**
* Moves and/or copies the nodes in each bin to new table. See
* above for explanation.
*/
private final void transfer(final Node[] tab, Node[] nextTab) {
final int n = tab.length;
int stride;
if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
stride = MIN_TRANSFER_STRIDE; // subdivide range
if (nextTab == null) { // initiating
try {
@SuppressWarnings({"rawtypes", "unchecked"}) final
Node[] nt = (Node[]) new Node[n << 1];
nextTab = nt;
} catch (final Throwable ex) { // try to cope with OOME
sizeCtl = Integer.MAX_VALUE;
return;
}
nextTable = nextTab;
transferOrigin = n;
transferIndex = n;
final ForwardingNode rev = new ForwardingNode(tab);
for (int k = n; k > 0; ) { // progressively reveal ready slots
final int nextk = (k > stride) ? k - stride : 0;
for (int m = nextk; m < k; ++m)
nextTab[m] = rev;
for (int m = n + nextk; m < n + k; ++m)
nextTab[m] = rev;
U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
}
}
final int nextn = nextTab.length;
final ForwardingNode fwd = new ForwardingNode(nextTab);
boolean advance = true;
boolean finishing = false; // to ensure sweep before committing nextTab
for (int i = 0, bound = 0; ; ) {
int nextIndex;
int nextBound;
final int fh;
final Node f;
while (advance) {
if (--i >= bound || finishing)
advance = false;
else if ((nextIndex = transferIndex) <= transferOrigin) {
i = -1;
advance = false;
} else if (U.compareAndSwapInt
(this, TRANSFERINDEX, nextIndex,
nextBound = (nextIndex > stride ?
nextIndex - stride : 0))) {
bound = nextBound;
i = nextIndex - 1;
advance = false;
}
}
if (i < 0 || i >= n || i + n >= nextn) {
if (finishing) {
nextTable = null;
table = nextTab;
sizeCtl = (n << 1) - (n >>> 1);
return;
}
for (int sc; ; ) {
if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
if (sc != -1)
return;
finishing = advance = true;
i = n; // recheck before commit
break;
}
}
} else if ((f = tabAt(tab, i)) == null) {
if (casTabAt(tab, i, null, fwd)) {
setTabAt(nextTab, i, null);
setTabAt(nextTab, i + n, null);
advance = true;
}
} else if ((fh = f.hash) == MOVED)
advance = true; // already processed
else {
synchronized (f) {
if (tabAt(tab, i) == f) {
Node ln, hn;
if (fh >= 0) {
int runBit = fh & n;
Node lastRun = f;
for (Node p = f.next; p != null; p = p.next) {
final int b = p.hash & n;
if (b != runBit) {
runBit = b;
lastRun = p;
}
}
if (runBit == 0) {
ln = lastRun;
hn = null;
} else {
hn = lastRun;
ln = null;
}
for (Node p = f; p != lastRun; p = p.next) {
final int ph = p.hash;
final K pk = p.key;
final V pv = p.val;
if ((ph & n) == 0)
ln = new Node(ph, pk, pv, ln);
else
hn = new Node(ph, pk, pv, hn);
}
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i + n, hn);
setTabAt(tab, i, fwd);
advance = true;
} else if (f instanceof TreeBin) {
final TreeBin t = (TreeBin) f;
TreeNode lo = null, loTail = null;
TreeNode hi = null, hiTail = null;
int lc = 0, hc = 0;
for (Node e = t.first; e != null; e = e.next) {
final int h = e.hash;
final TreeNode p = new TreeNode
(h, e.key, e.val, null, null);
if ((h & n) == 0) {
if ((p.prev = loTail) == null)
lo = p;
else
loTail.next = p;
loTail = p;
++lc;
} else {
if ((p.prev = hiTail) == null)
hi = p;
else
hiTail.next = p;
hiTail = p;
++hc;
}
}
ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
(hc != 0) ? new TreeBin(lo) : t;
hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
(lc != 0) ? new TreeBin(hi) : t;
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i + n, hn);
setTabAt(tab, i, fwd);
advance = true;
}
}
}
}
}
}
/* ---------------- Conversion from/to TreeBins -------------- */
/**
* Replaces all linked nodes in bin at given index unless table is
* too small, in which case resizes instead.
*/
private final void treeifyBin(final Node[] tab, final int index) {
final Node b;
final int n;
final int sc;
if (tab != null) {
if ((n = tab.length) < MIN_TREEIFY_CAPACITY) {
if (tab == table && (sc = sizeCtl) >= 0 &&
U.compareAndSwapInt(this, SIZECTL, sc, -2))
transfer(tab, null);
} else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
synchronized (b) {
if (tabAt(tab, index) == b) {
TreeNode hd = null, tl = null;
for (Node e = b; e != null; e = e.next) {
final TreeNode p =
new TreeNode(e.hash, e.key, e.val,
null, null);
if ((p.prev = tl) == null)
hd = p;
else
tl.next = p;
tl = p;
}
setTabAt(tab, index, new TreeBin(hd));
}
}
}
}
}
/**
* Returns a list on non-TreeNodes replacing those in given list.
*/
static Node untreeify(final Node b) {
Node hd = null, tl = null;
for (Node q = b; q != null; q = q.next) {
final Node p = new Node(q.hash, q.key, q.val, null);
if (tl == null)
hd = p;
else
tl.next = p;
tl = p;
}
return hd;
}
/* ---------------- TreeNodes -------------- */
/**
* Nodes for use in TreeBins
*/
static final class TreeNode extends Node {
TreeNode parent; // red-black tree links
TreeNode left;
TreeNode right;
TreeNode prev; // needed to unlink next upon deletion
boolean red;
TreeNode(final int hash, final K key, final V val, final Node next,
final TreeNode parent) {
super(hash, key, val, next);
this.parent = parent;
}
Node find(final int h, final Object k) {
return findTreeNode(h, k, null);
}
/**
* Returns the TreeNode (or null if not found) for the given key
* starting at given root.
*/
final TreeNode findTreeNode(final int h, final Object k, Class> kc) {
if (k != null) {
TreeNode p = this;
do {
final int ph;
final int dir;
final K pk;
final TreeNode q;
final TreeNode pl = p.left;
final TreeNode pr = p.right;
if ((ph = p.hash) > h)
p = pl;
else if (ph < h)
p = pr;
else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
return p;
else if (pl == null)
p = pr;
else if (pr == null)
p = pl;
else if ((kc != null ||
(kc = comparableClassFor(k)) != null) &&
(dir = compareComparables(kc, k, pk)) != 0)
p = (dir < 0) ? pl : pr;
else if ((q = pr.findTreeNode(h, k, kc)) != null)
return q;
else
p = pl;
} while (p != null);
}
return null;
}
}
/* ---------------- TreeBins -------------- */
/**
* TreeNodes used at the heads of bins. TreeBins do not hold user
* keys or values, but instead point to list of TreeNodes and
* their root. They also maintain a parasitic read-write lock
* forcing writers (who hold bin lock) to wait for readers (who do
* not) to complete before tree restructuring operations.
*/
static final class TreeBin extends Node {
TreeNode root;
volatile TreeNode first;
volatile Thread waiter;
volatile int lockState;
// values for lockState
static final int WRITER = 1; // set while holding write lock
static final int WAITER = 2; // set when waiting for write lock
static final int READER = 4; // increment value for setting read lock
/**
* Tie-breaking utility for ordering insertions when equal
* hashCodes and non-comparable. We don't require a total
* order, just a consistent insertion rule to maintain
* equivalence across rebalancings. Tie-breaking further than
* necessary simplifies testing a bit.
*/
static int tieBreakOrder(final Object a, final Object b) {
int d;
if (a == null || b == null ||
(d = a.getClass().getName().
compareTo(b.getClass().getName())) == 0)
d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
-1 : 1);
return d;
}
/**
* Creates bin with initial set of nodes headed by b.
*/
TreeBin(final TreeNode b) {
super(TREEBIN, null, null, null);
this.first = b;
TreeNode r = null;
for (TreeNode x = b, next; x != null; x = next) {
next = (TreeNode) x.next;
x.left = x.right = null;
if (r == null) {
x.parent = null;
x.red = false;
r = x;
} else {
final K k = x.key;
final int h = x.hash;
Class> kc = null;
for (TreeNode p = r; ; ) {
int dir;
final int ph;
final K pk = p.key;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0)
dir = tieBreakOrder(k, pk);
final TreeNode xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
x.parent = xp;
if (dir <= 0)
xp.left = x;
else
xp.right = x;
r = balanceInsertion(r, x);
break;
}
}
}
}
this.root = r;
assert checkInvariants(root);
}
/**
* Acquires write lock for tree restructuring.
*/
private final void lockRoot() {
if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
contendedLock(); // offload to separate method
}
/**
* Releases write lock for tree restructuring.
*/
private final void unlockRoot() {
lockState = 0;
}
/**
* Possibly blocks awaiting root lock.
*/
private final void contendedLock() {
boolean waiting = false;
for (int s; ; ) {
if (((s = lockState) & WRITER) == 0) {
if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
if (waiting)
waiter = null;
return;
}
} else if ((s & WAITER) == 0) {
if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
waiting = true;
waiter = Thread.currentThread();
}
} else if (waiting)
LockSupport.park(this);
}
}
/**
* Returns matching node or null if none. Tries to search
* using tree comparisons from root, but continues linear
* search when lock not available.
*/
final Node find(final int h, final Object k) {
if (k != null) {
for (Node e = first; e != null; e = e.next) {
final int s;
final K ek;
if (((s = lockState) & (WAITER | WRITER)) != 0) {
if (e.hash == h &&
((ek = e.key) == k || (ek != null && k.equals(ek))))
return e;
} else if (U.compareAndSwapInt(this, LOCKSTATE, s,
s + READER)) {
final TreeNode r;
TreeNode p;
try {
p = ((r = root) == null ? null :
r.findTreeNode(h, k, null));
} finally {
final Thread w;
int ls;
do {
} while (!U.compareAndSwapInt
(this, LOCKSTATE,
ls = lockState, ls - READER));
if (ls == (READER | WAITER) && (w = waiter) != null)
LockSupport.unpark(w);
}
return p;
}
}
}
return null;
}
/**
* Finds or adds a node.
*
* @return null if added
*/
final TreeNode putTreeVal(final int h, final K k, final V v) {
Class> kc = null;
boolean searched = false;
for (TreeNode p = root; ; ) {
int dir;
final int ph;
final K pk;
if (p == null) {
first = root = new TreeNode(h, k, v, null, null);
break;
} else if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
return p;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0) {
if (!searched) {
TreeNode q, ch;
searched = true;
if (((ch = p.left) != null &&
(q = ch.findTreeNode(h, k, kc)) != null) ||
((ch = p.right) != null &&
(q = ch.findTreeNode(h, k, kc)) != null))
return q;
}
dir = tieBreakOrder(k, pk);
}
final TreeNode xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
final TreeNode x;
final TreeNode f = first;
first = x = new TreeNode(h, k, v, f, xp);
if (f != null)
f.prev = x;
if (dir <= 0)
xp.left = x;
else
xp.right = x;
if (!xp.red)
x.red = true;
else {
lockRoot();
try {
root = balanceInsertion(root, x);
} finally {
unlockRoot();
}
}
break;
}
}
assert checkInvariants(root);
return null;
}
/**
* Removes the given node, that must be present before this
* call. This is messier than typical red-black deletion code
* because we cannot swap the contents of an interior node
* with a leaf successor that is pinned by "next" pointers
* that are accessible independently of lock. So instead we
* swap the tree linkages.
*
* @return true if now too small, so should be untreeified
*/
final boolean removeTreeNode(final TreeNode p) {
final TreeNode next = (TreeNode) p.next;
final TreeNode pred = p.prev; // unlink traversal pointers
TreeNode r;
final TreeNode rl;
if (pred == null)
first = next;
else
pred.next = next;
if (next != null)
next.prev = pred;
if (first == null) {
root = null;
return true;
}
if ((r = root) == null || r.right == null || // too small
(rl = r.left) == null || rl.left == null)
return true;
lockRoot();
try {
final TreeNode replacement;
final TreeNode pl = p.left;
final TreeNode pr = p.right;
if (pl != null && pr != null) {
TreeNode s = pr, sl;
while ((sl = s.left) != null) // find successor
s = sl;
final boolean c = s.red;
s.red = p.red;
p.red = c; // swap colors
final TreeNode sr = s.right;
final TreeNode pp = p.parent;
if (s == pr) { // p was s's direct parent
p.parent = s;
s.right = p;
} else {
final TreeNode sp = s.parent;
if ((p.parent = sp) != null) {
if (s == sp.left)
sp.left = p;
else
sp.right = p;
}
if ((s.right = pr) != null)
pr.parent = s;
}
p.left = null;
if ((p.right = sr) != null)
sr.parent = p;
if ((s.left = pl) != null)
pl.parent = s;
if ((s.parent = pp) == null)
r = s;
else if (p == pp.left)
pp.left = s;
else
pp.right = s;
if (sr != null)
replacement = sr;
else
replacement = p;
} else if (pl != null)
replacement = pl;
else if (pr != null)
replacement = pr;
else
replacement = p;
if (replacement != p) {
final TreeNode pp = replacement.parent = p.parent;
if (pp == null)
r = replacement;
else if (p == pp.left)
pp.left = replacement;
else
pp.right = replacement;
p.left = p.right = p.parent = null;
}
root = (p.red) ? r : balanceDeletion(r, replacement);
if (p == replacement) { // detach pointers
final TreeNode pp;
if ((pp = p.parent) != null) {
if (p == pp.left)
pp.left = null;
else if (p == pp.right)
pp.right = null;
p.parent = null;
}
}
} finally {
unlockRoot();
}
assert checkInvariants(root);
return false;
}
/* ------------------------------------------------------------ */
// Red-black tree methods, all adapted from CLR
static TreeNode rotateLeft(TreeNode root,
final TreeNode p) {
final TreeNode r;
final TreeNode pp;
final TreeNode rl;
if (p != null && (r = p.right) != null) {
if ((rl = p.right = r.left) != null)
rl.parent = p;
if ((pp = r.parent = p.parent) == null)
(root = r).red = false;
else if (pp.left == p)
pp.left = r;
else
pp.right = r;
r.left = p;
p.parent = r;
}
return root;
}
static TreeNode rotateRight(TreeNode root,
final TreeNode p) {
final TreeNode l;
final TreeNode pp;
final TreeNode lr;
if (p != null && (l = p.left) != null) {
if ((lr = p.left = l.right) != null)
lr.parent = p;
if ((pp = l.parent = p.parent) == null)
(root = l).red = false;
else if (pp.right == p)
pp.right = l;
else
pp.left = l;
l.right = p;
p.parent = l;
}
return root;
}
static TreeNode balanceInsertion(TreeNode root,
TreeNode x) {
x.red = true;
for (TreeNode xp, xpp, xppl, xppr; ; ) {
if ((xp = x.parent) == null) {
x.red = false;
return x;
} else if (!xp.red || (xpp = xp.parent) == null)
return root;
if (xp == (xppl = xpp.left)) {
if ((xppr = xpp.right) != null && xppr.red) {
xppr.red = false;
xp.red = false;
xpp.red = true;
x = xpp;
} else {
if (x == xp.right) {
root = rotateLeft(root, x = xp);
xpp = (xp = x.parent) == null ? null : xp.parent;
}
if (xp != null) {
xp.red = false;
if (xpp != null) {
xpp.red = true;
root = rotateRight(root, xpp);
}
}
}
} else {
if (xppl != null && xppl.red) {
xppl.red = false;
xp.red = false;
xpp.red = true;
x = xpp;
} else {
if (x == xp.left) {
root = rotateRight(root, x = xp);
xpp = (xp = x.parent) == null ? null : xp.parent;
}
if (xp != null) {
xp.red = false;
if (xpp != null) {
xpp.red = true;
root = rotateLeft(root, xpp);
}
}
}
}
}
}
static