All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.glowroot.shaded.HdrHistogram.DoubleHistogram Maven / Gradle / Ivy

The newest version!
/**
 * Written by Gil Tene of Azul Systems, and released to the public domain,
 * as explained at http://creativecommons.org/publicdomain/zero/1.0/
 *
 * @author Gil Tene
 */

package org.glowroot.shaded.HdrHistogram;

import java.io.*;
import java.lang.reflect.Constructor;
import java.lang.reflect.InvocationTargetException;
import java.nio.ByteBuffer;
import java.util.Iterator;
import java.util.zip.DataFormatException;
import java.util.zip.Deflater;

/**
 * A floating point values High Dynamic Range (HDR) Histogram
 * 

* It is important to note that {@link DoubleHistogram} is not thread-safe, and does not support safe concurrent * recording by multiple threads. If concurrent operation is required, consider usings * {@link ConcurrentDoubleHistogram}, {@link SynchronizedDoubleHistogram}, or(recommended) * {@link DoubleRecorder}, which are intended for this purpose. *

* {@link DoubleHistogram} supports the recording and analyzing sampled data value counts across a * configurable dynamic range of floating point (double) values, with configurable value precision within the range. * Dynamic range is expressed as a ratio between the highest and lowest non-zero values trackable within the histogram * at any given time. Value precision is expressed as the number of significant [decimal] digits in the value recording, * and provides control over value quantization behavior across the value range and the subsequent value resolution at * any given level. *

* Auto-ranging: Unlike integer value based histograms, the specific value range tracked by a {@link * DoubleHistogram} is not specified upfront. Only the dynamic range of values that the histogram can cover is * (optionally) specified. E.g. When a {@link DoubleHistogram} is created to track a dynamic range of * 3600000000000 (enough to track values from a nanosecond to an hour), values could be recorded into into it in any * consistent unit of time as long as the ratio between the highest and lowest non-zero values stays within the * specified dynamic range, so recording in units of nanoseconds (1.0 thru 3600000000000.0), milliseconds (0.000001 * thru 3600000.0) seconds (0.000000001 thru 3600.0), hours (1/3.6E12 thru 1.0) will all work just as well. *

* Auto-resizing: When constructed with no specified dynamic range (or when auto-resize is turned on with {@link * DoubleHistogram#setAutoResize}) a {@link DoubleHistogram} will auto-resize its dynamic range to * include recorded values as they are encountered. Note that recording calls that cause auto-resizing may take * longer to execute, as resizing incurs allocation and copying of internal data structures. *

* Attempts to record non-zero values that range outside of the specified dynamic range (or exceed the limits of * of dynamic range when auto-resizing) may results in {@link ArrayIndexOutOfBoundsException} exceptions, either * due to overflow or underflow conditions. These exceptions will only be thrown if recording the value would have * resulted in discarding or losing the required value precision of values already recorded in the histogram. *

* See package description for {@link org.glowroot.shaded.HdrHistogram} for details. */ public class DoubleHistogram extends EncodableHistogram implements Serializable { static final double highestAllowedValueEver; // A value that will keep us from multiplying into infinity. private long configuredHighestToLowestValueRatio; private volatile double currentLowestValueInAutoRange; private volatile double currentHighestValueLimitInAutoRange; AbstractHistogram integerValuesHistogram; volatile double doubleToIntegerValueConversionRatio; volatile double integerToDoubleValueConversionRatio; private boolean autoResize = false; /** * Construct a new auto-resizing DoubleHistogram using a precision stated as a number * of significant decimal digits. * * @param numberOfSignificantValueDigits Specifies the precision to use. This is the number of significant * decimal digits to which the histogram will maintain value resolution * and separation. Must be a non-negative integer between 0 and 5. */ public DoubleHistogram(final int numberOfSignificantValueDigits) { this(2, numberOfSignificantValueDigits, Histogram.class, null); setAutoResize(true); } /** * Construct a new DoubleHistogram with the specified dynamic range (provided in * {@code highestToLowestValueRatio}) and using a precision stated as a number of significant * decimal digits. * * @param highestToLowestValueRatio specifies the dynamic range to use * @param numberOfSignificantValueDigits Specifies the precision to use. This is the number of significant * decimal digits to which the histogram will maintain value resolution * and separation. Must be a non-negative integer between 0 and 5. */ public DoubleHistogram(final long highestToLowestValueRatio, final int numberOfSignificantValueDigits) { this(highestToLowestValueRatio, numberOfSignificantValueDigits, Histogram.class); } /** * Construct a new DoubleHistogram with the specified dynamic range (provided in * {@code highestToLowestValueRatio}) and using a precision stated as a number of significant * decimal digits. * * The {@link org.glowroot.shaded.HdrHistogram.DoubleHistogram} will use the specified AbstractHistogram subclass * for tracking internal counts (e.g. {@link org.glowroot.shaded.HdrHistogram.Histogram}, * {@link org.glowroot.shaded.HdrHistogram.ConcurrentHistogram}, {@link org.glowroot.shaded.HdrHistogram.SynchronizedHistogram}, * {@link org.glowroot.shaded.HdrHistogram.IntCountsHistogram}, {@link org.glowroot.shaded.HdrHistogram.ShortCountsHistogram}). * * @param highestToLowestValueRatio specifies the dynamic range to use. * @param numberOfSignificantValueDigits Specifies the precision to use. This is the number of significant * decimal digits to which the histogram will maintain value resolution * and separation. Must be a non-negative integer between 0 and 5. * @param internalCountsHistogramClass The class to use for internal counts tracking */ protected DoubleHistogram(final long highestToLowestValueRatio, final int numberOfSignificantValueDigits, final Class internalCountsHistogramClass) { this(highestToLowestValueRatio, numberOfSignificantValueDigits, internalCountsHistogramClass, null); } private DoubleHistogram(final long highestToLowestValueRatio, final int numberOfSignificantValueDigits, final Class internalCountsHistogramClass, AbstractHistogram internalCountsHistogram) { this( highestToLowestValueRatio, numberOfSignificantValueDigits, internalCountsHistogramClass, internalCountsHistogram, false ); } private DoubleHistogram(final long highestToLowestValueRatio, final int numberOfSignificantValueDigits, final Class internalCountsHistogramClass, AbstractHistogram internalCountsHistogram, boolean mimicInternalModel) { try { if (highestToLowestValueRatio < 2) { throw new IllegalArgumentException("highestToLowestValueRatio must be >= 2"); } if ((highestToLowestValueRatio * Math.pow(10.0, numberOfSignificantValueDigits)) >= (1L << 61)) { throw new IllegalArgumentException( "highestToLowestValueRatio * (10^numberOfSignificantValueDigits) must be < (1L << 61)"); } if (internalCountsHistogramClass == AtomicHistogram.class) { throw new IllegalArgumentException( "AtomicHistogram cannot be used as an internal counts histogram (does not support shifting)." + " Use ConcurrentHistogram instead."); } long integerValueRange = deriveIntegerValueRange(highestToLowestValueRatio, numberOfSignificantValueDigits); final AbstractHistogram valuesHistogram; double initialLowestValueInAutoRange; if (internalCountsHistogram == null) { // Create the internal counts histogram: Constructor histogramConstructor = internalCountsHistogramClass.getConstructor(long.class, long.class, int.class); valuesHistogram = histogramConstructor.newInstance( 1L, (integerValueRange - 1), numberOfSignificantValueDigits ); // We want the auto-ranging to tend towards using a value range that will result in using the // lower tracked value ranges and leave the higher end empty unless the range is actually used. // This is most easily done by making early recordings force-shift the lower value limit to // accommodate them (forcing a force-shift for the higher values would achieve the opposite). // We will therefore start with a very high value range, and let the recordings autoAdjust // downwards from there: initialLowestValueInAutoRange = Math.pow(2.0, 800); } else if (mimicInternalModel) { Constructor histogramConstructor = internalCountsHistogramClass.getConstructor(AbstractHistogram.class); valuesHistogram = histogramConstructor.newInstance(internalCountsHistogram); initialLowestValueInAutoRange = Math.pow(2.0, 800); } else { // Verify that the histogram we got matches: if ((internalCountsHistogram.getLowestDiscernibleValue() != 1) || (internalCountsHistogram.getHighestTrackableValue() != integerValueRange - 1) || internalCountsHistogram.getNumberOfSignificantValueDigits() != numberOfSignificantValueDigits) { throw new IllegalStateException("integer values histogram does not match stated parameters."); } valuesHistogram = internalCountsHistogram; // Derive initialLowestValueInAutoRange from valuesHistogram's integerToDoubleValueConversionRatio: initialLowestValueInAutoRange = internalCountsHistogram.getIntegerToDoubleValueConversionRatio() * internalCountsHistogram.subBucketHalfCount; } // Set our double tracking range and internal histogram: init(highestToLowestValueRatio, initialLowestValueInAutoRange, valuesHistogram); } catch (NoSuchMethodException ex) { throw new IllegalArgumentException(ex); } catch (IllegalAccessException ex) { throw new IllegalArgumentException(ex); } catch (InstantiationException ex) { throw new IllegalArgumentException(ex); } catch (InvocationTargetException ex) { throw new IllegalArgumentException(ex); } } /** * Construct a {@link org.glowroot.shaded.HdrHistogram.DoubleHistogram} with the same range settings as a given source, * duplicating the source's start/end timestamps (but NOT it's contents) * @param source The source histogram to duplicate */ public DoubleHistogram(final DoubleHistogram source) { this(source.configuredHighestToLowestValueRatio, source.getNumberOfSignificantValueDigits(), source.integerValuesHistogram.getClass(), source.integerValuesHistogram, true); this.autoResize = source.autoResize; } private void init(final long configuredHighestToLowestValueRatio, final double lowestTrackableUnitValue, final AbstractHistogram integerValuesHistogram) { this.configuredHighestToLowestValueRatio = configuredHighestToLowestValueRatio; this.integerValuesHistogram = integerValuesHistogram; long internalHighestToLowestValueRatio = deriveInternalHighestToLowestValueRatio(configuredHighestToLowestValueRatio); setTrackableValueRange(lowestTrackableUnitValue, lowestTrackableUnitValue * internalHighestToLowestValueRatio); } private void setTrackableValueRange(final double lowestValueInAutoRange, final double highestValueInAutoRange) { this.currentLowestValueInAutoRange = lowestValueInAutoRange; this.currentHighestValueLimitInAutoRange = highestValueInAutoRange; this.integerToDoubleValueConversionRatio = lowestValueInAutoRange / getLowestTrackingIntegerValue(); this.doubleToIntegerValueConversionRatio= 1.0 / integerToDoubleValueConversionRatio; integerValuesHistogram.setIntegerToDoubleValueConversionRatio(integerToDoubleValueConversionRatio); } // // // Auto-resizing control: // // public boolean isAutoResize() { return autoResize; } public void setAutoResize(boolean autoResize) { this.autoResize = autoResize; } // // // // Value recording support: // // // /** * Record a value in the histogram * * @param value The value to be recorded * @throws ArrayIndexOutOfBoundsException (may throw) if value is cannot be covered by the histogram's range */ public void recordValue(final double value) throws ArrayIndexOutOfBoundsException { recordSingleValue(value); } /** * Record a value in the histogram (adding to the value's current count) * * @param value The value to be recorded * @param count The number of occurrences of this value to record * @throws ArrayIndexOutOfBoundsException (may throw) if value is cannot be covered by the histogram's range */ public void recordValueWithCount(final double value, final long count) throws ArrayIndexOutOfBoundsException { recordCountAtValue(count, value); } /** * Record a value in the histogram. *

* To compensate for the loss of sampled values when a recorded value is larger than the expected * interval between value samples, Histogram will auto-generate an additional series of decreasingly-smaller * (down to the expectedIntervalBetweenValueSamples) value records. *

* Note: This is a at-recording correction method, as opposed to the post-recording correction method provided * by {@link #copyCorrectedForCoordinatedOmission(double)}. * The use cases for these two methods are mutually exclusive, and only one of the two should be be used on * a given data set to correct for the same coordinated omission issue. *

* See notes in the description of the Histogram calls for an illustration of why this corrective behavior is * important. * * @param value The value to record * @param expectedIntervalBetweenValueSamples If expectedIntervalBetweenValueSamples is larger than 0, add * auto-generated value records as appropriate if value is larger * than expectedIntervalBetweenValueSamples * @throws ArrayIndexOutOfBoundsException (may throw) if value is cannot be covered by the histogram's range */ public void recordValueWithExpectedInterval(final double value, final double expectedIntervalBetweenValueSamples) throws ArrayIndexOutOfBoundsException { recordValueWithCountAndExpectedInterval(value, 1, expectedIntervalBetweenValueSamples); } private void recordCountAtValue(final long count, final double value) throws ArrayIndexOutOfBoundsException { if ((value < currentLowestValueInAutoRange) || (value > currentHighestValueLimitInAutoRange)) { // Zero is valid and needs no auto-ranging, but also rare enough that we should deal // with it on the slow path... autoAdjustRangeForValue(value); } long integerValue = (long) (value * doubleToIntegerValueConversionRatio); integerValuesHistogram.recordValueWithCount(integerValue, count); } private void recordSingleValue(final double value) throws ArrayIndexOutOfBoundsException { if ((value < currentLowestValueInAutoRange) || (value >= currentHighestValueLimitInAutoRange)) { // Zero is valid and needs no auto-ranging, but also rare enough that we should deal // with it on the slow path... autoAdjustRangeForValue(value); } long integerValue = (long) (value * doubleToIntegerValueConversionRatio); integerValuesHistogram.recordValue(integerValue); } private void recordValueWithCountAndExpectedInterval(final double value, final long count, final double expectedIntervalBetweenValueSamples) throws ArrayIndexOutOfBoundsException { recordCountAtValue(count, value); if (expectedIntervalBetweenValueSamples <= 0) return; for (double missingValue = value - expectedIntervalBetweenValueSamples; missingValue >= expectedIntervalBetweenValueSamples; missingValue -= expectedIntervalBetweenValueSamples) { recordCountAtValue(count, missingValue); } } // // // // Shift and auto-ranging support: // // // private void autoAdjustRangeForValue(final double value) { // Zero is always valid, and doesn't need auto-range adjustment: if (value == 0.0) { return; } autoAdjustRangeForValueSlowPath(value); } private synchronized void autoAdjustRangeForValueSlowPath(final double value) { if (value < currentLowestValueInAutoRange) { if (value < 0.0) { throw new ArrayIndexOutOfBoundsException("Negative values cannot be recorded"); } do { int shiftAmount = findCappedContainingBinaryOrderOfMagnitude( Math.ceil(currentLowestValueInAutoRange / value) - 1.0); shiftCoveredRangeToTheRight(shiftAmount); } while (value < currentLowestValueInAutoRange); } else if (value >= currentHighestValueLimitInAutoRange) { if (value > highestAllowedValueEver) { throw new ArrayIndexOutOfBoundsException( "Values above " + highestAllowedValueEver + " cannot be recorded"); } do { // If value is an exact whole multiple of currentHighestValueLimitInAutoRange, it "belongs" with // the next level up, as it crosses the limit. With floating point values, the simplest way to // make this shift on exact multiple values happen (but not for any just-smaller-than-exact-multiple // values) is to use a value that is 1 ulp bigger in computing the ratio for the shift amount: int shiftAmount = findCappedContainingBinaryOrderOfMagnitude( Math.ceil((value + Math.ulp(value)) / currentHighestValueLimitInAutoRange) - 1.0); shiftCoveredRangeToTheLeft(shiftAmount); } while (value >= currentHighestValueLimitInAutoRange); } } private void shiftCoveredRangeToTheRight(final int numberOfBinaryOrdersOfMagnitude) { // We are going to adjust the tracked range by effectively shifting it to the right // (in the integer shift sense). // // To counter the right shift of the value multipliers, we need to left shift the internal // representation such that the newly shifted integer values will continue to return the // same double values. // Initially, new range is the same as current range, to make sure we correctly recover // from a shift failure if one happens: double newLowestValueInAutoRange = currentLowestValueInAutoRange; double newHighestValueLimitInAutoRange = currentHighestValueLimitInAutoRange; try { double shiftMultiplier = 1.0 / (1L << numberOfBinaryOrdersOfMagnitude); // First, temporarily change the highest value in auto-range without changing conversion ratios. // This is done to force new values higher than the new expected highest value to attempt an // adjustment (which is synchronized and will wait behind this one). This ensures that we will // not end up with any concurrently recorded values that would need to be discarded if the shift // fails. If this shift succeeds, the pending adjustment attempt will end up doing nothing. currentHighestValueLimitInAutoRange *= shiftMultiplier; // First shift the values, to give the shift a chance to fail: // Shift integer histogram left, increasing the recorded integer values for current recordings // by a factor of (1 << numberOfBinaryOrdersOfMagnitude): // (no need to shift any values if all recorded values are at the 0 value level:) if (getTotalCount() > integerValuesHistogram.getCountAtIndex(0)) { // Apply the shift: try { integerValuesHistogram.shiftValuesLeft(numberOfBinaryOrdersOfMagnitude); } catch (ArrayIndexOutOfBoundsException ex) { // Failed to shift, try to expand size instead: handleShiftValuesException(numberOfBinaryOrdersOfMagnitude, ex); // First expand the highest limit to reflect successful size expansion: newHighestValueLimitInAutoRange /= shiftMultiplier; // Successfully expanded histogram range by numberOfBinaryOrdersOfMagnitude, but not // by shifting (shifting failed because there was not room to shift left into). Instead, // we grew the max value without changing the value mapping. Since we were trying to // shift values left to begin with, trying to shift the left again will work (we now // have room to shift into): integerValuesHistogram.shiftValuesLeft(numberOfBinaryOrdersOfMagnitude); } } // Shift (or resize) was successful. Adjust new range to reflect: newLowestValueInAutoRange *= shiftMultiplier; newHighestValueLimitInAutoRange *= shiftMultiplier; } finally { // Set the new range to either the successfully changed one, or the original one: setTrackableValueRange(newLowestValueInAutoRange, newHighestValueLimitInAutoRange); } } private void shiftCoveredRangeToTheLeft(final int numberOfBinaryOrdersOfMagnitude) { // We are going to adjust the tracked range by effectively shifting it to the right // (in the integer shift sense). // // To counter the left shift of the value multipliers, we need to right shift the internal // representation such that the newly shifted integer values will continue to return the // same double values. // Initially, new range is the same as current range, to make sure we correctly recover // from a shift failure if one happens: double newLowestValueInAutoRange = currentLowestValueInAutoRange; double newHighestValueLimitInAutoRange = currentHighestValueLimitInAutoRange; try { double shiftMultiplier = 1.0 * (1L << numberOfBinaryOrdersOfMagnitude); // First, temporarily change the lowest value in auto-range without changing conversion ratios. // This is done to force new values lower than the new expected lowest value to attempt an // adjustment (which is synchronized and will wait behind this one). This ensures that we will // not end up with any concurrently recorded values that would need to be discarded if the shift // fails. If this shift succeeds, the pending adjustment attempt will end up doing nothing. currentLowestValueInAutoRange *= shiftMultiplier; // First shift the values, to give the shift a chance to fail: // Shift integer histogram right, decreasing the recorded integer values for current recordings // by a factor of (1 << numberOfBinaryOrdersOfMagnitude): // (no need to shift any values if all recorded values are at the 0 value level:) if (getTotalCount() > integerValuesHistogram.getCountAtIndex(0)) { // Apply the shift: try { integerValuesHistogram.shiftValuesRight(numberOfBinaryOrdersOfMagnitude); // Shift was successful. Adjust new range to reflect: newLowestValueInAutoRange *= shiftMultiplier; newHighestValueLimitInAutoRange *= shiftMultiplier; } catch (ArrayIndexOutOfBoundsException ex) { // Failed to shift, try to expand size instead: handleShiftValuesException(numberOfBinaryOrdersOfMagnitude, ex); // Successfully expanded histogram range by numberOfBinaryOrdersOfMagnitude, but not // by shifting (shifting failed because there was not room to shift right into). Instead, // we grew the max value without changing the value mapping. Since we were trying to // shift values right to begin with to make room for a larger value than we had had // been able to fit before, no shift is needed, as the value should now fit. So rather // than shifting and adjusting both lowest and highest limits, we'll end up just // expanding newHighestValueLimitInAutoRange to indicate the newly expanded range. // We therefore reverse-scale the newLowestValueInAutoRange before lating the later // code scale both up: newLowestValueInAutoRange /= shiftMultiplier; } } // Shift (or resize) was successful. Adjust new range to reflect: newLowestValueInAutoRange *= shiftMultiplier; newHighestValueLimitInAutoRange *= shiftMultiplier; } finally { // Set the new range to either the successfully changed one, or the original one: setTrackableValueRange(newLowestValueInAutoRange, newHighestValueLimitInAutoRange); } } private void handleShiftValuesException(final int numberOfBinaryOrdersOfMagnitude, Exception ex) { if (!autoResize) { throw new ArrayIndexOutOfBoundsException("value outside of histogram covered range. Caused by: " + ex); } long highestTrackableValue = integerValuesHistogram.getHighestTrackableValue(); int highestTrackableValueContainingOrderOfMagnitude = findContainingBinaryOrderOfMagnitude(highestTrackableValue); long newHighestTrackableValue = (1L << (numberOfBinaryOrdersOfMagnitude + highestTrackableValueContainingOrderOfMagnitude)) - 1; if (newHighestTrackableValue < highestTrackableValue) { throw new ArrayIndexOutOfBoundsException( "cannot resize histogram covered range beyond (1L << 63) / (1L << " + (integerValuesHistogram.subBucketHalfCountMagnitude) + ") - 1.\n" + "Caused by:" + ex); } integerValuesHistogram.resize(newHighestTrackableValue); integerValuesHistogram.highestTrackableValue = newHighestTrackableValue; configuredHighestToLowestValueRatio <<= numberOfBinaryOrdersOfMagnitude; } // // // // Clearing support: // // // /** * Reset the contents and stats of this histogram */ public void reset() { integerValuesHistogram.clearCounts(); } // // // // Copy support: // // // /** * Create a copy of this histogram, complete with data and everything. * * @return A distinct copy of this histogram. */ public DoubleHistogram copy() { final DoubleHistogram targetHistogram = new DoubleHistogram(configuredHighestToLowestValueRatio, getNumberOfSignificantValueDigits()); targetHistogram.setTrackableValueRange(currentLowestValueInAutoRange, currentHighestValueLimitInAutoRange); integerValuesHistogram.copyInto(targetHistogram.integerValuesHistogram); return targetHistogram; } /** * Get a copy of this histogram, corrected for coordinated omission. *

* To compensate for the loss of sampled values when a recorded value is larger than the expected * interval between value samples, the new histogram will include an auto-generated additional series of * decreasingly-smaller (down to the expectedIntervalBetweenValueSamples) value records for each count found * in the current histogram that is larger than the expectedIntervalBetweenValueSamples. * * Note: This is a post-correction method, as opposed to the at-recording correction method provided * by {@link #recordValueWithExpectedInterval(double, double) recordValueWithExpectedInterval}. The two * methods are mutually exclusive, and only one of the two should be be used on a given data set to correct * for the same coordinated omission issue. * by *

* See notes in the description of the Histogram calls for an illustration of why this corrective behavior is * important. * * @param expectedIntervalBetweenValueSamples If expectedIntervalBetweenValueSamples is larger than 0, add * auto-generated value records as appropriate if value is larger * than expectedIntervalBetweenValueSamples * @return a copy of this histogram, corrected for coordinated omission. */ public DoubleHistogram copyCorrectedForCoordinatedOmission(final double expectedIntervalBetweenValueSamples) { final DoubleHistogram targetHistogram = new DoubleHistogram(configuredHighestToLowestValueRatio, getNumberOfSignificantValueDigits()); targetHistogram.setTrackableValueRange(currentLowestValueInAutoRange, currentHighestValueLimitInAutoRange); targetHistogram.addWhileCorrectingForCoordinatedOmission(this, expectedIntervalBetweenValueSamples); return targetHistogram; } /** * Copy this histogram into the target histogram, overwriting it's contents. * * @param targetHistogram the histogram to copy into */ public void copyInto(final DoubleHistogram targetHistogram) { targetHistogram.reset(); targetHistogram.add(this); targetHistogram.setStartTimeStamp(integerValuesHistogram.startTimeStampMsec); targetHistogram.setEndTimeStamp(integerValuesHistogram.endTimeStampMsec); } /** * Copy this histogram, corrected for coordinated omission, into the target histogram, overwriting it's contents. * (see {@link #copyCorrectedForCoordinatedOmission} for more detailed explanation about how correction is applied) * * @param targetHistogram the histogram to copy into * @param expectedIntervalBetweenValueSamples If expectedIntervalBetweenValueSamples is larger than 0, add * auto-generated value records as appropriate if value is larger * than expectedIntervalBetweenValueSamples */ public void copyIntoCorrectedForCoordinatedOmission(final DoubleHistogram targetHistogram, final double expectedIntervalBetweenValueSamples) { targetHistogram.reset(); targetHistogram.addWhileCorrectingForCoordinatedOmission(this, expectedIntervalBetweenValueSamples); targetHistogram.setStartTimeStamp(integerValuesHistogram.startTimeStampMsec); targetHistogram.setEndTimeStamp(integerValuesHistogram.endTimeStampMsec); } // // // // Add support: // // // /** * Add the contents of another histogram to this one. * * @param fromHistogram The other histogram. * @throws ArrayIndexOutOfBoundsException (may throw) if values in fromHistogram's cannot be * covered by this histogram's range */ public void add(final DoubleHistogram fromHistogram) throws ArrayIndexOutOfBoundsException { int arrayLength = fromHistogram.integerValuesHistogram.countsArrayLength; AbstractHistogram fromIntegerHistogram = fromHistogram.integerValuesHistogram; for (int i = 0; i < arrayLength; i++) { long count = fromIntegerHistogram.getCountAtIndex(i); if (count > 0) { recordValueWithCount( fromIntegerHistogram.valueFromIndex(i) * fromHistogram.integerToDoubleValueConversionRatio, count); } } } /** * Add the contents of another histogram to this one, while correcting the incoming data for coordinated omission. *

* To compensate for the loss of sampled values when a recorded value is larger than the expected * interval between value samples, the values added will include an auto-generated additional series of * decreasingly-smaller (down to the expectedIntervalBetweenValueSamples) value records for each count found * in the current histogram that is larger than the expectedIntervalBetweenValueSamples. * * Note: This is a post-recording correction method, as opposed to the at-recording correction method provided * by {@link #recordValueWithExpectedInterval(double, double) recordValueWithExpectedInterval}. The two * methods are mutually exclusive, and only one of the two should be be used on a given data set to correct * for the same coordinated omission issue. * by *

* See notes in the description of the Histogram calls for an illustration of why this corrective behavior is * important. * * @param fromHistogram Other histogram. highestToLowestValueRatio and numberOfSignificantValueDigits must match. * @param expectedIntervalBetweenValueSamples If expectedIntervalBetweenValueSamples is larger than 0, add * auto-generated value records as appropriate if value is larger * than expectedIntervalBetweenValueSamples * @throws ArrayIndexOutOfBoundsException (may throw) if values exceed highestTrackableValue */ public void addWhileCorrectingForCoordinatedOmission(final DoubleHistogram fromHistogram, final double expectedIntervalBetweenValueSamples) { final DoubleHistogram toHistogram = this; for (HistogramIterationValue v : fromHistogram.integerValuesHistogram.recordedValues()) { toHistogram.recordValueWithCountAndExpectedInterval( v.getValueIteratedTo() * integerToDoubleValueConversionRatio, v.getCountAtValueIteratedTo(), expectedIntervalBetweenValueSamples); } } /** * Subtract the contents of another histogram from this one. * * @param otherHistogram The other histogram. * @throws ArrayIndexOutOfBoundsException (may throw) if values in fromHistogram's cannot be * covered by this histogram's range */ public void subtract(final DoubleHistogram otherHistogram) { int arrayLength = otherHistogram.integerValuesHistogram.countsArrayLength; AbstractHistogram otherIntegerHistogram = otherHistogram.integerValuesHistogram; for (int i = 0; i < arrayLength; i++) { long otherCount = otherIntegerHistogram.getCountAtIndex(i); if (otherCount > 0) { double otherValue = otherIntegerHistogram.valueFromIndex(i) * otherHistogram.integerToDoubleValueConversionRatio; if (getCountAtValue(otherValue) < otherCount) { throw new IllegalArgumentException("otherHistogram count (" + otherCount + ") at value " + otherValue + " is larger than this one's (" + getCountAtValue(otherValue) + ")"); } recordValueWithCount(otherValue, -otherCount); } } } // // // // Comparison support: // // // /** * Determine if this histogram is equivalent to another. * * @param other the other histogram to compare to * @return True if this histogram are equivalent with the other. */ public boolean equals(final Object other){ if ( this == other ) { return true; } if ( !(other instanceof DoubleHistogram) ) { return false; } DoubleHistogram that = (DoubleHistogram) other; if ((currentLowestValueInAutoRange != that.currentLowestValueInAutoRange) || (currentHighestValueLimitInAutoRange != that.currentHighestValueLimitInAutoRange) || (getNumberOfSignificantValueDigits() != that.getNumberOfSignificantValueDigits())) { return false; } if (integerValuesHistogram.countsArrayLength != that.integerValuesHistogram.countsArrayLength) { return false; } if (getTotalCount() != that.getTotalCount()) { return false; } for (int i = 0; i < integerValuesHistogram.countsArrayLength; i++) { if (integerValuesHistogram.getCountAtIndex(i) != that.integerValuesHistogram.getCountAtIndex(i)) { return false; } } return true; } // // // // Histogram structure querying support: // // // /** * Get the total count of all recorded values in the histogram * @return the total count of all recorded values in the histogram */ public long getTotalCount() { return integerValuesHistogram.getTotalCount(); } /** * get the current lowest (non zero) trackable value the automatically determined range * (keep in mind that this can change because it is auto ranging) * @return current lowest trackable value the automatically determined range */ double getCurrentLowestTrackableNonZeroValue() { return currentLowestValueInAutoRange; } /** * get the current highest trackable value in the automatically determined range * (keep in mind that this can change because it is auto ranging) * @return current highest trackable value in the automatically determined range */ double getCurrentHighestTrackableValue() { return currentHighestValueLimitInAutoRange; } /** * Get the current conversion ratio from interval integer value representation to double units. * (keep in mind that this can change because it is auto ranging). This ratio can be useful * for converting integer values found in iteration, although the preferred form for accessing * iteration values would be to use the * {@link org.glowroot.shaded.HdrHistogram.HistogramIterationValue#getDoubleValueIteratedTo() getDoubleValueIteratedTo()} * and * {@link org.glowroot.shaded.HdrHistogram.HistogramIterationValue#getDoubleValueIteratedFrom() getDoubleValueIteratedFrom()} * accessors to {@link org.glowroot.shaded.HdrHistogram.HistogramIterationValue} iterated values. * * @return the current conversion ratio from interval integer value representation to double units. */ public double getIntegerToDoubleValueConversionRatio() { return integerToDoubleValueConversionRatio; } /** * get the configured numberOfSignificantValueDigits * @return numberOfSignificantValueDigits */ public int getNumberOfSignificantValueDigits() { return integerValuesHistogram.numberOfSignificantValueDigits; } /** * get the Dynamic range of the histogram: the configured ratio between the highest trackable value and the * lowest trackable non zero value at any given time. * @return the dynamic range of the histogram, expressed as the ratio between the highest trackable value * and the lowest trackable non zero value at any given time. */ public long getHighestToLowestValueRatio() { return configuredHighestToLowestValueRatio; } /** * Get the size (in value units) of the range of values that are equivalent to the given value within the * histogram's resolution. Where "equivalent" means that value samples recorded for any two * equivalent values are counted in a common total count. * * @param value The given value * @return The lowest value that is equivalent to the given value within the histogram's resolution. */ public double sizeOfEquivalentValueRange(final double value) { return integerValuesHistogram.sizeOfEquivalentValueRange((long)(value * doubleToIntegerValueConversionRatio)) * integerToDoubleValueConversionRatio; } /** * Get the lowest value that is equivalent to the given value within the histogram's resolution. * Where "equivalent" means that value samples recorded for any two * equivalent values are counted in a common total count. * * @param value The given value * @return The lowest value that is equivalent to the given value within the histogram's resolution. */ public double lowestEquivalentValue(final double value) { return integerValuesHistogram.lowestEquivalentValue((long)(value * doubleToIntegerValueConversionRatio)) * integerToDoubleValueConversionRatio; } /** * Get the highest value that is equivalent to the given value within the histogram's resolution. * Where "equivalent" means that value samples recorded for any two * equivalent values are counted in a common total count. * * @param value The given value * @return The highest value that is equivalent to the given value within the histogram's resolution. */ public double highestEquivalentValue(final double value) { double nextNonEquivalentValue = nextNonEquivalentValue(value); // Theoretically, nextNonEquivalentValue - ulp(nextNonEquivalentValue) == nextNonEquivalentValue // is possible (if the ulp size switches right at nextNonEquivalentValue), so drop by 2 ulps and // increment back up to closest within-ulp value. double highestEquivalentValue = nextNonEquivalentValue - (2 * Math.ulp(nextNonEquivalentValue)); while (highestEquivalentValue + Math.ulp(highestEquivalentValue) < nextNonEquivalentValue) { highestEquivalentValue += Math.ulp(highestEquivalentValue); } return highestEquivalentValue; } /** * Get a value that lies in the middle (rounded up) of the range of values equivalent the given value. * Where "equivalent" means that value samples recorded for any two * equivalent values are counted in a common total count. * * @param value The given value * @return The value lies in the middle (rounded up) of the range of values equivalent the given value. */ public double medianEquivalentValue(final double value) { return integerValuesHistogram.medianEquivalentValue((long)(value * doubleToIntegerValueConversionRatio)) * integerToDoubleValueConversionRatio; } /** * Get the next value that is not equivalent to the given value within the histogram's resolution. * Where "equivalent" means that value samples recorded for any two * equivalent values are counted in a common total count. * * @param value The given value * @return The next value that is not equivalent to the given value within the histogram's resolution. */ public double nextNonEquivalentValue(final double value) { return integerValuesHistogram.nextNonEquivalentValue((long)(value * doubleToIntegerValueConversionRatio)) * integerToDoubleValueConversionRatio; } /** * Determine if two values are equivalent with the histogram's resolution. * Where "equivalent" means that value samples recorded for any two * equivalent values are counted in a common total count. * * @param value1 first value to compare * @param value2 second value to compare * @return True if values are equivalent to within the histogram's resolution. */ public boolean valuesAreEquivalent(final double value1, final double value2) { return (lowestEquivalentValue(value1) == lowestEquivalentValue(value2)); } /** * Provide a (conservatively high) estimate of the Histogram's total footprint in bytes * * @return a (conservatively high) estimate of the Histogram's total footprint in bytes */ public int getEstimatedFootprintInBytes() { return integerValuesHistogram._getEstimatedFootprintInBytes(); } // // // // Timestamp support: // // // /** * get the start time stamp [optionally] stored with this histogram * @return the start time stamp [optionally] stored with this histogram */ public long getStartTimeStamp() { return integerValuesHistogram.startTimeStampMsec; } /** * Set the start time stamp value associated with this histogram to a given value. * @param timeStampMsec the value to set the time stamp to, [by convention] in msec since the epoch. */ public void setStartTimeStamp(final long timeStampMsec) { this.integerValuesHistogram.startTimeStampMsec = timeStampMsec; } /** * get the end time stamp [optionally] stored with this histogram * @return the end time stamp [optionally] stored with this histogram */ public long getEndTimeStamp() { return integerValuesHistogram.endTimeStampMsec; } /** * Set the end time stamp value associated with this histogram to a given value. * @param timeStampMsec the value to set the time stamp to, [by convention] in msec since the epoch. */ public void setEndTimeStamp(final long timeStampMsec) { this.integerValuesHistogram.endTimeStampMsec = timeStampMsec; } // // // // Histogram Data access support: // // // /** * Get the lowest recorded value level in the histogram * * @return the Min value recorded in the histogram */ public double getMinValue() { return integerValuesHistogram.getMinValue() * integerToDoubleValueConversionRatio; } /** * Get the highest recorded value level in the histogram * * @return the Max value recorded in the histogram */ public double getMaxValue() { return integerValuesHistogram.getMaxValue() * integerToDoubleValueConversionRatio; } /** * Get the lowest recorded non-zero value level in the histogram * * @return the lowest recorded non-zero value level in the histogram */ public double getMinNonZeroValue() { return integerValuesHistogram.getMinNonZeroValue() * integerToDoubleValueConversionRatio; } /** * Get the highest recorded value level in the histogram as a double * * @return the highest recorded value level in the histogram as a double */ @Override public double getMaxValueAsDouble() { return getMaxValue(); } /** * Get the computed mean value of all recorded values in the histogram * * @return the mean value (in value units) of the histogram data */ public double getMean() { return integerValuesHistogram.getMean() * integerToDoubleValueConversionRatio; } /** * Get the computed standard deviation of all recorded values in the histogram * * @return the standard deviation (in value units) of the histogram data */ public double getStdDeviation() { return integerValuesHistogram.getStdDeviation() * integerToDoubleValueConversionRatio; } /** * Get the value at a given percentile. * When the percentile is > 0.0, the value returned is the value that the given the given * percentage of the overall recorded value entries in the histogram are either smaller than * or equivalent to. When the percentile is 0.0, the value returned is the value that all value * entries in the histogram are either larger than or equivalent to. *

* Note that two values are "equivalent" in this statement if * {@link org.glowroot.shaded.HdrHistogram.DoubleHistogram#valuesAreEquivalent} would return true. * * @param percentile The percentile for which to return the associated value * @return The value that the given percentage of the overall recorded value entries in the * histogram are either smaller than or equivalent to. When the percentile is 0.0, returns the * value that all value entries in the histogram are either larger than or equivalent to. */ public double getValueAtPercentile(final double percentile) { return integerValuesHistogram.getValueAtPercentile(percentile) * integerToDoubleValueConversionRatio; } /** * Get the percentile at a given value. * The percentile returned is the percentile of values recorded in the histogram that are smaller * than or equivalent to the given value. *

* Note that two values are "equivalent" in this statement if * {@link org.glowroot.shaded.HdrHistogram.DoubleHistogram#valuesAreEquivalent} would return true. * * @param value The value for which to return the associated percentile * @return The percentile of values recorded in the histogram that are smaller than or equivalent * to the given value. */ public double getPercentileAtOrBelowValue(final double value) { return integerValuesHistogram.getPercentileAtOrBelowValue((long)(value * doubleToIntegerValueConversionRatio)); } /** * Get the count of recorded values within a range of value levels (inclusive to within the histogram's resolution). * * @param lowValue The lower value bound on the range for which * to provide the recorded count. Will be rounded down with * {@link DoubleHistogram#lowestEquivalentValue lowestEquivalentValue}. * @param highValue The higher value bound on the range for which to provide the recorded count. * Will be rounded up with {@link DoubleHistogram#highestEquivalentValue highestEquivalentValue}. * @return the total count of values recorded in the histogram within the value range that is * {@literal >=} lowestEquivalentValue(lowValue) and {@literal <=} highestEquivalentValue(highValue) */ public double getCountBetweenValues(final double lowValue, final double highValue) throws ArrayIndexOutOfBoundsException { return integerValuesHistogram.getCountBetweenValues( (long)(lowValue * doubleToIntegerValueConversionRatio), (long)(highValue * doubleToIntegerValueConversionRatio) ); } /** * Get the count of recorded values at a specific value (to within the histogram resolution at the value level). * * @param value The value for which to provide the recorded count * @return The total count of values recorded in the histogram within the value range that is * {@literal >=} lowestEquivalentValue(value) and {@literal <=} highestEquivalentValue(value) */ public long getCountAtValue(final double value) throws ArrayIndexOutOfBoundsException { return integerValuesHistogram.getCountAtValue((long)(value * doubleToIntegerValueConversionRatio)); } /** * Provide a means of iterating through histogram values according to percentile levels. The iteration is * performed in steps that start at 0% and reduce their distance to 100% according to the * percentileTicksPerHalfDistance parameter, ultimately reaching 100% when all recorded histogram * values are exhausted. *

* @param percentileTicksPerHalfDistance The number of iteration steps per half-distance to 100%. * @return An {@link java.lang.Iterable}{@literal <}{@link DoubleHistogramIterationValue}{@literal >} * through the histogram using a * {@link DoublePercentileIterator} */ public Percentiles percentiles(final int percentileTicksPerHalfDistance) { return new Percentiles(this, percentileTicksPerHalfDistance); } /** * Provide a means of iterating through histogram values using linear steps. The iteration is * performed in steps of valueUnitsPerBucket in size, terminating when all recorded histogram * values are exhausted. * * @param valueUnitsPerBucket The size (in value units) of the linear buckets to use * @return An {@link java.lang.Iterable}{@literal <}{@link DoubleHistogramIterationValue}{@literal >} * through the histogram using a * {@link DoubleLinearIterator} */ public LinearBucketValues linearBucketValues(final double valueUnitsPerBucket) { return new LinearBucketValues(this, valueUnitsPerBucket); } /** * Provide a means of iterating through histogram values at logarithmically increasing levels. The iteration is * performed in steps that start at valueUnitsInFirstBucket and increase exponentially according to * logBase, terminating when all recorded histogram values are exhausted. * * @param valueUnitsInFirstBucket The size (in value units) of the first bucket in the iteration * @param logBase The multiplier by which bucket sizes will grow in each iteration step * @return An {@link java.lang.Iterable}{@literal <}{@link DoubleHistogramIterationValue}{@literal >} * through the histogram using * a {@link DoubleLogarithmicIterator} */ public LogarithmicBucketValues logarithmicBucketValues(final double valueUnitsInFirstBucket, final double logBase) { return new LogarithmicBucketValues(this, valueUnitsInFirstBucket, logBase); } /** * Provide a means of iterating through all recorded histogram values using the finest granularity steps * supported by the underlying representation. The iteration steps through all non-zero recorded value counts, * and terminates when all recorded histogram values are exhausted. * * @return An {@link java.lang.Iterable}{@literal <}{@link DoubleHistogramIterationValue}{@literal >} * through the histogram using * a {@link DoubleRecordedValuesIterator} */ public RecordedValues recordedValues() { return new RecordedValues(this); } /** * Provide a means of iterating through all histogram values using the finest granularity steps supported by * the underlying representation. The iteration steps through all possible unit value levels, regardless of * whether or not there were recorded values for that value level, and terminates when all recorded histogram * values are exhausted. * * @return An {@link java.lang.Iterable}{@literal <}{@link DoubleHistogramIterationValue}{@literal >} * through the histogram using a {@link DoubleAllValuesIterator} */ public AllValues allValues() { return new AllValues(this); } // Percentile iterator support: /** * An {@link java.lang.Iterable}{@literal <}{@link DoubleHistogramIterationValue}{@literal >} through * the histogram using a {@link DoublePercentileIterator} */ public class Percentiles implements Iterable { final DoubleHistogram histogram; final int percentileTicksPerHalfDistance; private Percentiles(final DoubleHistogram histogram, final int percentileTicksPerHalfDistance) { this.histogram = histogram; this.percentileTicksPerHalfDistance = percentileTicksPerHalfDistance; } /** * @return A {@link DoublePercentileIterator}{@literal <}{@link DoubleHistogramIterationValue}{@literal >} */ public Iterator iterator() { return new DoublePercentileIterator(histogram, percentileTicksPerHalfDistance); } } // Linear iterator support: /** * An {@link java.lang.Iterable}{@literal <}{@link DoubleHistogramIterationValue}{@literal >} through * the histogram using a {@link DoubleLinearIterator} */ public class LinearBucketValues implements Iterable { final DoubleHistogram histogram; final double valueUnitsPerBucket; private LinearBucketValues(final DoubleHistogram histogram, final double valueUnitsPerBucket) { this.histogram = histogram; this.valueUnitsPerBucket = valueUnitsPerBucket; } /** * @return A {@link DoubleLinearIterator}{@literal <}{@link DoubleHistogramIterationValue}{@literal >} */ public Iterator iterator() { return new DoubleLinearIterator(histogram, valueUnitsPerBucket); } } // Logarithmic iterator support: /** * An {@link java.lang.Iterable}{@literal <}{@link DoubleHistogramIterationValue}{@literal >} through * the histogram using a {@link DoubleLogarithmicIterator} */ public class LogarithmicBucketValues implements Iterable { final DoubleHistogram histogram; final double valueUnitsInFirstBucket; final double logBase; private LogarithmicBucketValues(final DoubleHistogram histogram, final double valueUnitsInFirstBucket, final double logBase) { this.histogram = histogram; this.valueUnitsInFirstBucket = valueUnitsInFirstBucket; this.logBase = logBase; } /** * @return A {@link DoubleLogarithmicIterator}{@literal <}{@link DoubleHistogramIterationValue}{@literal >} */ public Iterator iterator() { return new DoubleLogarithmicIterator(histogram, valueUnitsInFirstBucket, logBase); } } // Recorded value iterator support: /** * An {@link java.lang.Iterable}{@literal <}{@link DoubleHistogramIterationValue}{@literal >} through * the histogram using a {@link DoubleRecordedValuesIterator} */ public class RecordedValues implements Iterable { final DoubleHistogram histogram; private RecordedValues(final DoubleHistogram histogram) { this.histogram = histogram; } /** * @return A {@link DoubleRecordedValuesIterator}{@literal <}{@link HistogramIterationValue}{@literal >} */ public Iterator iterator() { return new DoubleRecordedValuesIterator(histogram); } } // AllValues iterator support: /** * An {@link java.lang.Iterable}{@literal <}{@link DoubleHistogramIterationValue}{@literal >} through * the histogram using a {@link DoubleAllValuesIterator} */ public class AllValues implements Iterable { final DoubleHistogram histogram; private AllValues(final DoubleHistogram histogram) { this.histogram = histogram; } /** * @return A {@link DoubleAllValuesIterator}{@literal <}{@link HistogramIterationValue}{@literal >} */ public Iterator iterator() { return new DoubleAllValuesIterator(histogram); } } /** * Produce textual representation of the value distribution of histogram data by percentile. The distribution is * output with exponentially increasing resolution, with each exponentially decreasing half-distance containing * five (5) percentile reporting tick points. * * @param printStream Stream into which the distribution will be output *

* @param outputValueUnitScalingRatio The scaling factor by which to divide histogram recorded values units in * output */ public void outputPercentileDistribution(final PrintStream printStream, final Double outputValueUnitScalingRatio) { outputPercentileDistribution(printStream, 5, outputValueUnitScalingRatio); } // // // // Textual percentile output support: // // // /** * Produce textual representation of the value distribution of histogram data by percentile. The distribution is * output with exponentially increasing resolution, with each exponentially decreasing half-distance containing * dumpTicksPerHalf percentile reporting tick points. * * @param printStream Stream into which the distribution will be output *

* @param percentileTicksPerHalfDistance The number of reporting points per exponentially decreasing half-distance *

* @param outputValueUnitScalingRatio The scaling factor by which to divide histogram recorded values units in * output */ public void outputPercentileDistribution(final PrintStream printStream, final int percentileTicksPerHalfDistance, final Double outputValueUnitScalingRatio) { outputPercentileDistribution(printStream, percentileTicksPerHalfDistance, outputValueUnitScalingRatio, false); } /** * Produce textual representation of the value distribution of histogram data by percentile. The distribution is * output with exponentially increasing resolution, with each exponentially decreasing half-distance containing * dumpTicksPerHalf percentile reporting tick points. * * @param printStream Stream into which the distribution will be output *

* @param percentileTicksPerHalfDistance The number of reporting points per exponentially decreasing half-distance *

* @param outputValueUnitScalingRatio The scaling factor by which to divide histogram recorded values units in * output * @param useCsvFormat Output in CSV format if true. Otherwise use plain text form. */ public void outputPercentileDistribution(final PrintStream printStream, final int percentileTicksPerHalfDistance, final Double outputValueUnitScalingRatio, final boolean useCsvFormat) { integerValuesHistogram.outputPercentileDistribution(printStream, percentileTicksPerHalfDistance, outputValueUnitScalingRatio / integerToDoubleValueConversionRatio, useCsvFormat); } // // // // Serialization support: // // // private static final long serialVersionUID = 42L; private void writeObject(final ObjectOutputStream o) throws IOException { o.writeLong(configuredHighestToLowestValueRatio); o.writeDouble(currentLowestValueInAutoRange); o.writeObject(integerValuesHistogram); } private void readObject(final ObjectInputStream o) throws IOException, ClassNotFoundException { final long configuredHighestToLowestValueRatio = o.readLong(); final double lowestValueInAutoRange = o.readDouble(); AbstractHistogram integerValuesHistogram = (AbstractHistogram) o.readObject(); init(configuredHighestToLowestValueRatio, lowestValueInAutoRange, integerValuesHistogram); } // // // // Encoding/Decoding support: // // // /** * Get the capacity needed to encode this histogram into a ByteBuffer * @return the capacity needed to encode this histogram into a ByteBuffer */ @Override public int getNeededByteBufferCapacity() { return integerValuesHistogram.getNeededByteBufferCapacity(); } private int getNeededByteBufferCapacity(final int relevantLength) { return integerValuesHistogram.getNeededByteBufferCapacity(relevantLength); } private void fillCountsArrayFromBuffer(final ByteBuffer buffer, final int length) { integerValuesHistogram.fillCountsArrayFromBuffer(buffer, length); } private void fillBufferFromCountsArray(final ByteBuffer buffer, final int length) { integerValuesHistogram.fillBufferFromCountsArray(buffer, length); } private static final int DHIST_encodingCookie = 0x0c72124e; private static final int DHIST_compressedEncodingCookie = 0x0c72124f; static boolean isDoubleHistogramCookie(int cookie) { return isCompressedDoubleHistogramCookie(cookie) || isNonCompressedDoubleHistogramCookie(cookie); } static boolean isCompressedDoubleHistogramCookie(int cookie) { return (cookie == DHIST_compressedEncodingCookie); } static boolean isNonCompressedDoubleHistogramCookie(int cookie) { return (cookie == DHIST_encodingCookie); } /** * Encode this histogram into a ByteBuffer * @param buffer The buffer to encode into * @return The number of bytes written to the buffer */ synchronized public int encodeIntoByteBuffer(final ByteBuffer buffer) { long maxValue = integerValuesHistogram.getMaxValue(); int relevantLength = integerValuesHistogram.getLengthForNumberOfBuckets( integerValuesHistogram.getBucketsNeededToCoverValue(maxValue)); if (buffer.capacity() < getNeededByteBufferCapacity(relevantLength)) { throw new ArrayIndexOutOfBoundsException("buffer does not have capacity for" + getNeededByteBufferCapacity(relevantLength) + " bytes"); } buffer.putInt(DHIST_encodingCookie); buffer.putInt(getNumberOfSignificantValueDigits()); buffer.putLong(configuredHighestToLowestValueRatio); return integerValuesHistogram.encodeIntoByteBuffer(buffer) + 16; } /** * Encode this histogram in compressed form into a byte array * @param targetBuffer The buffer to encode into * @param compressionLevel Compression level (for java.util.zip.Deflater). * @return The number of bytes written to the buffer */ @Override synchronized public int encodeIntoCompressedByteBuffer( final ByteBuffer targetBuffer, final int compressionLevel) { targetBuffer.putInt(DHIST_compressedEncodingCookie); targetBuffer.putInt(getNumberOfSignificantValueDigits()); targetBuffer.putLong(configuredHighestToLowestValueRatio); return integerValuesHistogram.encodeIntoCompressedByteBuffer(targetBuffer, compressionLevel) + 16; } /** * Encode this histogram in compressed form into a byte array * @param targetBuffer The buffer to encode into * @return The number of bytes written to the array */ public int encodeIntoCompressedByteBuffer(final ByteBuffer targetBuffer) { return encodeIntoCompressedByteBuffer(targetBuffer, Deflater.DEFAULT_COMPRESSION); } static DoubleHistogram constructHistogramFromBuffer( int cookie, final ByteBuffer buffer, final Class histogramClass, final long minBarForHighestToLowestValueRatio) throws DataFormatException { int numberOfSignificantValueDigits = buffer.getInt(); long configuredHighestToLowestValueRatio = buffer.getLong(); final AbstractHistogram valuesHistogram; if (isNonCompressedDoubleHistogramCookie(cookie)) { valuesHistogram = AbstractHistogram.decodeFromByteBuffer(buffer, histogramClass, minBarForHighestToLowestValueRatio); } else if (isCompressedDoubleHistogramCookie(cookie)) { valuesHistogram = AbstractHistogram.decodeFromCompressedByteBuffer(buffer, histogramClass, minBarForHighestToLowestValueRatio); } else { throw new IllegalStateException("The buffer does not contain a DoubleHistogram"); } DoubleHistogram histogram = new DoubleHistogram( configuredHighestToLowestValueRatio, numberOfSignificantValueDigits, histogramClass, valuesHistogram ); return histogram; } /** * Construct a new DoubleHistogram by decoding it from a ByteBuffer. * @param buffer The buffer to decode from * @param minBarForHighestToLowestValueRatio Force highestTrackableValue to be set at least this high * @return The newly constructed DoubleHistogram */ public static DoubleHistogram decodeFromByteBuffer( final ByteBuffer buffer, final long minBarForHighestToLowestValueRatio) { return decodeFromByteBuffer(buffer, Histogram.class, minBarForHighestToLowestValueRatio); } /** * Construct a new DoubleHistogram by decoding it from a ByteBuffer, using a * specified AbstractHistogram subclass for tracking internal counts (e.g. {@link org.glowroot.shaded.HdrHistogram.Histogram}, * {@link org.glowroot.shaded.HdrHistogram.ConcurrentHistogram}, {@link org.glowroot.shaded.HdrHistogram.SynchronizedHistogram}, * {@link org.glowroot.shaded.HdrHistogram.IntCountsHistogram}, {@link org.glowroot.shaded.HdrHistogram.ShortCountsHistogram}). * * @param buffer The buffer to decode from * @param internalCountsHistogramClass The class to use for internal counts tracking * @param minBarForHighestToLowestValueRatio Force highestTrackableValue to be set at least this high * @return The newly constructed DoubleHistogram */ public static DoubleHistogram decodeFromByteBuffer( final ByteBuffer buffer, final Class internalCountsHistogramClass, long minBarForHighestToLowestValueRatio) { try { int cookie = buffer.getInt(); if (!isNonCompressedDoubleHistogramCookie(cookie)) { throw new IllegalArgumentException("The buffer does not contain a DoubleHistogram"); } DoubleHistogram histogram = constructHistogramFromBuffer(cookie, buffer, internalCountsHistogramClass, minBarForHighestToLowestValueRatio); return histogram; } catch (DataFormatException ex) { throw new RuntimeException(ex); } } /** * Construct a new DoubleHistogram by decoding it from a compressed form in a ByteBuffer. * @param buffer The buffer to decode from * @param minBarForHighestToLowestValueRatio Force highestTrackableValue to be set at least this high * @return The newly constructed DoubleHistogram * @throws DataFormatException on error parsing/decompressing the buffer */ public static DoubleHistogram decodeFromCompressedByteBuffer( final ByteBuffer buffer, final long minBarForHighestToLowestValueRatio) throws DataFormatException { return decodeFromCompressedByteBuffer(buffer, Histogram.class, minBarForHighestToLowestValueRatio); } /** * Construct a new DoubleHistogram by decoding it from a compressed form in a ByteBuffer, using a * specified AbstractHistogram subclass for tracking internal counts (e.g. {@link org.glowroot.shaded.HdrHistogram.Histogram}, * {@link org.glowroot.shaded.HdrHistogram.AtomicHistogram}, {@link org.glowroot.shaded.HdrHistogram.SynchronizedHistogram}, * {@link org.glowroot.shaded.HdrHistogram.IntCountsHistogram}, {@link org.glowroot.shaded.HdrHistogram.ShortCountsHistogram}). * * @param buffer The buffer to decode from * @param internalCountsHistogramClass The class to use for internal counts tracking * @param minBarForHighestToLowestValueRatio Force highestTrackableValue to be set at least this high * @return The newly constructed DoubleHistogram * @throws DataFormatException on error parsing/decompressing the buffer */ public static DoubleHistogram decodeFromCompressedByteBuffer( final ByteBuffer buffer, Class internalCountsHistogramClass, long minBarForHighestToLowestValueRatio) throws DataFormatException { int cookie = buffer.getInt(); if (!isCompressedDoubleHistogramCookie(cookie)) { throw new IllegalArgumentException("The buffer does not contain a compressed DoubleHistogram"); } DoubleHistogram histogram = constructHistogramFromBuffer(cookie, buffer, internalCountsHistogramClass, minBarForHighestToLowestValueRatio); return histogram; } // // // // Internal helper methods: // // // private long deriveInternalHighestToLowestValueRatio(final long externalHighestToLowestValueRatio) { // Internal dynamic range needs to be 1 order of magnitude larger than the containing order of magnitude. // e.g. the dynamic range that covers [0.9, 2.1) is 2.33x, which on it's own would require 4x range to // cover the contained order of magnitude. But (if 1.0 was a bucket boundary, for example, the range // will actually need to cover [0.5..1.0) [1.0..2.0) [2.0..4.0), mapping to an 8x internal dynamic range. long internalHighestToLowestValueRatio = 1L << (findContainingBinaryOrderOfMagnitude(externalHighestToLowestValueRatio) + 1); return internalHighestToLowestValueRatio; } private long deriveIntegerValueRange(final long externalHighestToLowestValueRatio, final int numberOfSignificantValueDigits) { long internalHighestToLowestValueRatio = deriveInternalHighestToLowestValueRatio(externalHighestToLowestValueRatio); // We cannot use the bottom half of bucket 0 in an integer values histogram to represent double // values, because the required precision does not exist there. We therefore need the integer // range to be bigger, such that the entire double value range can fit in the upper halves of // all buckets. Compute the integer value range that will achieve this: long lowestTackingIntegerValue = AbstractHistogram.numberOfSubbuckets(numberOfSignificantValueDigits) / 2; long integerValueRange = lowestTackingIntegerValue * internalHighestToLowestValueRatio; return integerValueRange; } private long getLowestTrackingIntegerValue() { return integerValuesHistogram.subBucketHalfCount; } private static int findContainingBinaryOrderOfMagnitude(final long longNumber) { int pow2ceiling = 64 - Long.numberOfLeadingZeros(longNumber); // smallest power of 2 containing value return pow2ceiling; } private static int findContainingBinaryOrderOfMagnitude(final double doubleNumber) { long longNumber = (long) Math.ceil(doubleNumber); return findContainingBinaryOrderOfMagnitude(longNumber); } private int findCappedContainingBinaryOrderOfMagnitude(final double doubleNumber) { if (doubleNumber > configuredHighestToLowestValueRatio) { return (int) (Math.log(configuredHighestToLowestValueRatio)/Math.log(2)); } if (doubleNumber > Math.pow(2.0, 50)) { return 50; } return findContainingBinaryOrderOfMagnitude(doubleNumber); } static { // We don't want to allow the histogram to shift and expand into value ranges that could equate // to infinity (e.g. 1024.0 * (Double.MAX_VALUE / 1024.0) == Infinity). So lets makes sure the // highestAllowedValueEver cap is a couple of bindary orders of magnitude away from MAX_VALUE: // Choose a highestAllowedValueEver that is a nice power of 2 multiple of 1.0 : double value = 1.0; while (value < Double.MAX_VALUE / 4.0) { value *= 2; } highestAllowedValueEver = value; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy