fs2.data.pfsa.Pred.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of fs2-data-finite-state_native0.4_3 Show documentation
Show all versions of fs2-data-finite-state_native0.4_3 Show documentation
Streaming finite state machines
The newest version!
/*
* Copyright 2024 fs2-data Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package fs2.data.pfsa
/** A typeclass for predicates, that can be combined together. */
trait Pred[P, Elt] {
/** Whether the element `e` satisfies the predicate. */
def satisfies(p: P)(e: Elt): Boolean
/** The predicate that is always true. */
def always: P
/** The predicate that is always false. */
def never: P
/** Conjunction of both predicates. */
def and(p1: P, p2: P): P
/** Disjunction of both predicates. */
def or(p1: P, p2: P): P
/** The negation of this predicate. */
def not(p: P): P
/** Whether the predicate is not obviously non satisfiable. */
def isSatisfiable(p: P): Boolean
}
object Pred {
def apply[P, T](implicit ev: Pred[P, T]): Pred[P, T] = ev
object syntax {
def always[P](implicit P: Pred[P, _]): P =
P.always
def never[P](implicit P: Pred[P, _]): P =
P.never
implicit class PredOps[P](val p1: P) extends AnyVal {
def satisfies[Elt](e: Elt)(implicit P: Pred[P, Elt]): Boolean =
P.satisfies(p1)(e)
def &&[Elt](p2: P)(implicit P: Pred[P, Elt]): P =
P.and(p1, p2)
def ||[Elt](p2: P)(implicit P: Pred[P, Elt]): P =
P.or(p1, p2)
def unary_![Elt](implicit P: Pred[P, Elt]): P =
P.not(p1)
def isSatisfiable[Elt](implicit P: Pred[P, Elt]): Boolean =
P.isSatisfiable(p1)
}
}
}