gnu.crypto.cipher.Anubis Maven / Gradle / Ivy
The newest version!
package gnu.crypto.cipher;
// ----------------------------------------------------------------------------
// $Id: Anubis.java,v 1.9 2003/04/28 10:27:36 raif Exp $
//
// Copyright (C) 2001, 2002, 2003, Free Software Foundation, Inc.
//
// This file is part of GNU Crypto.
//
// GNU Crypto is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2, or (at your option)
// any later version.
//
// GNU Crypto is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; see the file COPYING. If not, write to the
//
// Free Software Foundation Inc.,
// 59 Temple Place - Suite 330,
// Boston, MA 02111-1307
// USA
//
// Linking this library statically or dynamically with other modules is
// making a combined work based on this library. Thus, the terms and
// conditions of the GNU General Public License cover the whole
// combination.
//
// As a special exception, the copyright holders of this library give
// you permission to link this library with independent modules to
// produce an executable, regardless of the license terms of these
// independent modules, and to copy and distribute the resulting
// executable under terms of your choice, provided that you also meet,
// for each linked independent module, the terms and conditions of the
// license of that module. An independent module is a module which is
// not derived from or based on this library. If you modify this
// library, you may extend this exception to your version of the
// library, but you are not obligated to do so. If you do not wish to
// do so, delete this exception statement from your version.
// ----------------------------------------------------------------------------
import gnu.crypto.Registry;
import gnu.crypto.util.Util;
//import java.io.PrintWriter;
import java.security.InvalidKeyException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Iterator;
/**
* Anubis is a 128-bit block cipher that accepts a variable-length key. The
* cipher is a uniform substitution-permutation network whose inverse only
* differs from the forward operation in the key schedule. The design of both
* the round transformation and the key schedule is based upon the Wide Trail
* strategy and permits a wide variety of implementation trade-offs.
*
* References:
*
*
* - The
* ANUBIS Block Cipher.
* Paulo S.L.M. Barreto and
* Vincent Rijmen.
*
*
* @version $Revision: 1.9 $
*/
public final class Anubis extends BaseCipher {
// Debugging methods and variables
// -------------------------------------------------------------------------
// private static final String NAME = "anubis";
private static final boolean DEBUG = false;
private static final int debuglevel = 9;
// private static final PrintWriter err = new PrintWriter(System.out, true);
// private static void debug(String s) {
// err.println(">>> "+NAME+": "+s);
// }
// Constants and variables
// -------------------------------------------------------------------------
private static final int DEFAULT_BLOCK_SIZE = 16; // in bytes
private static final int DEFAULT_KEY_SIZE = 16; // in bytes
private static final String Sd = // p. 25 [ANUBIS]
"\uBA54\u2F74\u53D3\uD24D\u50AC\u8DBF\u7052\u9A4C"+
"\uEAD5\u97D1\u3351\u5BA6\uDE48\uA899\uDB32\uB7FC"+
"\uE39E\u919B\uE2BB\u416E\uA5CB\u6B95\uA1F3\uB102"+
"\uCCC4\u1D14\uC363\uDA5D\u5FDC\u7DCD\u7F5A\u6C5C"+
"\uF726\uFFED\uE89D\u6F8E\u19A0\uF089\u0F07\uAFFB"+
"\u0815\u0D04\u0164\uDF76\u79DD\u3D16\u3F37\u6D38"+
"\uB973\uE935\u5571\u7B8C\u7288\uF62A\u3E5E\u2746"+
"\u0C65\u6861\u03C1\u57D6\uD958\uD866\uD73A\uC83C"+
"\uFA96\uA798\uECB8\uC7AE\u694B\uABA9\u670A\u47F2"+
"\uB522\uE5EE\uBE2B\u8112\u831B\u0E23\uF545\u21CE"+
"\u492C\uF9E6\uB628\u1782\u1A8B\uFE8A\u09C9\u874E"+
"\uE12E\uE4E0\uEB90\uA41E\u8560\u0025\uF4F1\u940B"+
"\uE775\uEF34\u31D4\uD086\u7EAD\uFD29\u303B\u9FF8"+
"\uC613\u0605\uC511\u777C\u7A78\u361C\u3959\u1856"+
"\uB3B0\u2420\uB292\uA3C0\u4462\u10B4\u8443\u93C2"+
"\u4ABD\u8F2D\uBC9C\u6A40\uCFA2\u804F\u1FCA\uAA42";
private static final byte[] S = new byte[256];
private static final int[] T0 = new int[256];
private static final int[] T1 = new int[256];
private static final int[] T2 = new int[256];
private static final int[] T3 = new int[256];
private static final int[] T4 = new int[256];
private static final int[] T5 = new int[256];
/**
* Anubis round constants. This is the largest possible considering that we
* always use R values, R = 8 + N, and 4 <= N <= 10.
*/
private static final int[] rc = new int[18];
/**
* KAT vector (from ecb_vk):
* I=83
* KEY=000000000000000000002000000000000000000000000000
* CT=2E66AB15773F3D32FB6C697509460DF4
*/
private static final byte[] KAT_KEY =
Util.toBytesFromString("000000000000000000002000000000000000000000000000");
private static final byte[] KAT_CT =
Util.toBytesFromString("2E66AB15773F3D32FB6C697509460DF4");
/** caches the result of the correctness test, once executed. */
private static Boolean valid;
// Static code - to initialise lookup tables -------------------------------
static {
long time = System.currentTimeMillis();
int ROOT = 0x11d; // para. 2.1 [ANUBIS]
int i, s, s2, s4, s6, s8, t;
char c;
for (i = 0; i < 256; i++) {
c = Sd.charAt(i >>> 1);
s = ((i & 1) == 0 ? c >>> 8 : c) & 0xFF;
S[i] = (byte) s;
s2 = s << 1;
if (s2 > 0xFF) {
s2 ^= ROOT;
}
s4 = s2 << 1;
if (s4 > 0xFF) {
s4 ^= ROOT;
}
s6 = s4 ^ s2;
s8 = s4 << 1;
if (s8 > 0xFF) {
s8 ^= ROOT;
}
T0[i] = s << 24 | s2 << 16 | s4 << 8 | s6;
T1[i] = s2 << 24 | s << 16 | s6 << 8 | s4;
T2[i] = s4 << 24 | s6 << 16 | s << 8 | s2;
T3[i] = s6 << 24 | s4 << 16 | s2 << 8 | s;
T4[i] = s << 24 | s << 16 | s << 8 | s;
T5[s] = s << 24 | s2 << 16 | s6 << 8 | s8;
}
// compute round constant
for (i = 0, s = 0; i < 18; ) {
rc[i++] = S[(s++) & 0xFF] << 24 |
(S[(s++) & 0xFF] & 0xFF) << 16 |
(S[(s++) & 0xFF] & 0xFF) << 8 |
(S[(s++) & 0xFF] & 0xFF);
}
time = System.currentTimeMillis() - time;
if (DEBUG && debuglevel > 8) {
System.out.println("==========");
System.out.println();
System.out.println("Static data");
System.out.println();
System.out.println();
System.out.println("T0[]:");
for (i = 0; i < 64; i++) {
for (t = 0; t < 4; t++) {
System.out.print("0x"+Util.toString(T0[i*4+t])+", ");
}
System.out.println();
}
System.out.println();
System.out.println("T1[]:");
for (i = 0; i < 64; i++) {
for (t = 0; t < 4; t++) {
System.out.print("0x"+Util.toString(T1[i*4+t])+", ");
}
System.out.println();
}
System.out.println();
System.out.println("T2[]:");
for (i = 0; i < 64; i++) {
for (t = 0; t < 4; t++) {
System.out.print("0x"+Util.toString(T2[i*4+t])+", ");
}
System.out.println();
}
System.out.println();
System.out.println("T3[]:");
for (i = 0; i < 64; i++) {
for (t = 0; t < 4; t++) {
System.out.print("0x"+Util.toString(T3[i*4+t])+", ");
}
System.out.println();
}
System.out.println();
System.out.println("T4[]:");
for (i = 0; i < 64; i++) {
for (t = 0; t < 4; t++) {
System.out.print("0x"+Util.toString(T4[i*4+t])+", ");
}
System.out.println();
}
System.out.println();
System.out.println("T5[]:");
for (i = 0; i < 64; i++){
for (t = 0; t < 4; t++) {
System.out.print("0x"+Util.toString(T5[i*4+t])+", ");
}
System.out.println();
}
System.out.println();
System.out.println("rc[]:");
for (i = 0; i < 18; i++) {
System.out.println("0x"+Util.toString(rc[i]));
}
System.out.println();
System.out.println();
System.out.println("Total initialization time: "+time+" ms.");
System.out.println();
}
}
// Constructor(s)
// -------------------------------------------------------------------------
/** Trivial 0-arguments constructor. */
public Anubis() {
super(Registry.ANUBIS_CIPHER, DEFAULT_BLOCK_SIZE, DEFAULT_KEY_SIZE);
}
// Class methods
// -------------------------------------------------------------------------
private static void anubis(byte[] in, int i, byte[] out, int j, int[][] K) {
// extract encryption round keys
int R = K.length - 1;
int[] Ker = K[0];
// mu function + affine key addition
int a0 = ( in[i++] << 24 |
(in[i++] & 0xFF) << 16 |
(in[i++] & 0xFF) << 8 |
(in[i++] & 0xFF) ) ^ Ker[0];
int a1 = ( in[i++] << 24 |
(in[i++] & 0xFF) << 16 |
(in[i++] & 0xFF) << 8 |
(in[i++] & 0xFF) ) ^ Ker[1];
int a2 = ( in[i++] << 24 |
(in[i++] & 0xFF) << 16 |
(in[i++] & 0xFF) << 8 |
(in[i++] & 0xFF) ) ^ Ker[2];
int a3 = ( in[i++] << 24 |
(in[i++] & 0xFF) << 16 |
(in[i++] & 0xFF) << 8 |
(in[i ] & 0xFF) ) ^ Ker[3];
int b0, b1, b2, b3;
// round function
for (int r = 1; r < R; r++) {
Ker = K[r];
b0 = T0[ a0 >>> 24 ] ^
T1[ a1 >>> 24 ] ^
T2[ a2 >>> 24 ] ^
T3[ a3 >>> 24 ] ^ Ker[0];
b1 = T0[(a0 >>> 16) & 0xFF] ^
T1[(a1 >>> 16) & 0xFF] ^
T2[(a2 >>> 16) & 0xFF] ^
T3[(a3 >>> 16) & 0xFF] ^ Ker[1];
b2 = T0[(a0 >>> 8) & 0xFF] ^
T1[(a1 >>> 8) & 0xFF] ^
T2[(a2 >>> 8) & 0xFF] ^
T3[(a3 >>> 8) & 0xFF] ^ Ker[2];
b3 = T0[ a0 & 0xFF] ^
T1[ a1 & 0xFF] ^
T2[ a2 & 0xFF] ^
T3[ a3 & 0xFF] ^ Ker[3];
a0 = b0;
a1 = b1;
a2 = b2;
a3 = b3;
if (DEBUG && debuglevel > 6) {
System.out.println("T"+r+"="+Util.toString(a0)+Util.toString(a1)
+Util.toString(a2)+Util.toString(a3));
}
}
// last round function
Ker = K[R];
int tt = Ker[0];
out[j++] = (byte)(S[ a0 >>> 24 ] ^ (tt >>> 24));
out[j++] = (byte)(S[ a1 >>> 24 ] ^ (tt >>> 16));
out[j++] = (byte)(S[ a2 >>> 24 ] ^ (tt >>> 8));
out[j++] = (byte)(S[ a3 >>> 24 ] ^ tt );
tt = Ker[1];
out[j++] = (byte)(S[(a0 >>> 16) & 0xFF] ^ (tt >>> 24));
out[j++] = (byte)(S[(a1 >>> 16) & 0xFF] ^ (tt >>> 16));
out[j++] = (byte)(S[(a2 >>> 16) & 0xFF] ^ (tt >>> 8));
out[j++] = (byte)(S[(a3 >>> 16) & 0xFF] ^ tt );
tt = Ker[2];
out[j++] = (byte)(S[(a0 >>> 8) & 0xFF] ^ (tt >>> 24));
out[j++] = (byte)(S[(a1 >>> 8) & 0xFF] ^ (tt >>> 16));
out[j++] = (byte)(S[(a2 >>> 8) & 0xFF] ^ (tt >>> 8));
out[j++] = (byte)(S[(a3 >>> 8) & 0xFF] ^ tt );
tt = Ker[3];
out[j++] = (byte)(S[ a0 & 0xFF] ^ (tt >>> 24));
out[j++] = (byte)(S[ a1 & 0xFF] ^ (tt >>> 16));
out[j++] = (byte)(S[ a2 & 0xFF] ^ (tt >>> 8));
out[j ] = (byte)(S[ a3 & 0xFF] ^ tt );
if (DEBUG && debuglevel > 6) {
System.out.println("T="+Util.toString(out, j-15, 16));
System.out.println();
}
}
// Instance methods
// -------------------------------------------------------------------------
// java.lang.Cloneable interface implementation ----------------------------
public Object clone() {
Anubis result = new Anubis();
result.currentBlockSize = this.currentBlockSize;
return result;
}
// IBlockCipherSpi interface implementation --------------------------------
public Iterator blockSizes() {
ArrayList al = new ArrayList();
al.add(new Integer(DEFAULT_BLOCK_SIZE));
return Collections.unmodifiableList(al).iterator();
}
public Iterator keySizes() {
ArrayList al = new ArrayList();
for (int n = 4; n < 10; n++) {
al.add(new Integer(n * 32 / 8));
}
return Collections.unmodifiableList(al).iterator();
}
/**
* Expands a user-supplied key material into a session key for a
* designated block size.
*
* @param uk the 32N-bit user-supplied key material; 4 <= N <= 10.
* @param bs the desired block size in bytes.
* @return an Object encapsulating the session key.
* @exception IllegalArgumentException if the block size is not 16 (128-bit).
* @exception InvalidKeyException if the key data is invalid.
*/
public Object makeKey(byte[] uk, int bs) throws InvalidKeyException {
if (bs != DEFAULT_BLOCK_SIZE) {
throw new IllegalArgumentException();
}
if (uk == null) {
throw new InvalidKeyException("Empty key");
}
if ((uk.length % 4) != 0) {
throw new InvalidKeyException("Key is not multiple of 32-bit.");
}
int N = uk.length / 4;
if (N < 4 || N > 10) {
throw new InvalidKeyException("Key is not 32N; 4 <= N <= 10");
}
int R = 8 + N;
int[][] Ke = new int[R + 1][4]; // encryption round keys
int[][] Kd = new int[R + 1][4]; // decryption round keys
int[] tk = new int[N];
int[] kk = new int[N];
int r, i, j, k, k0, k1, k2, k3, tt;
// apply mu to k0
for (r = 0, i = 0; r < N; ) {
tk[r++] = uk[i++] << 24 |
(uk[i++] & 0xFF) << 16 |
(uk[i++] & 0xFF) << 8 |
(uk[i++] & 0xFF);
}
for (r = 0; r <= R; r++) {
if (r > 0) {
// psi = key evolution function
kk[0] = T0[(tk[ 0 ] >>> 24) ] ^
T1[(tk[N-1] >>> 16) & 0xFF] ^
T2[(tk[N-2] >>> 8) & 0xFF] ^
T3[ tk[N-3] & 0xFF];
kk[1] = T0[(tk[ 1 ] >>> 24) ] ^
T1[(tk[ 0 ] >>> 16) & 0xFF] ^
T2[(tk[N-1] >>> 8) & 0xFF] ^
T3[ tk[N-2] & 0xFF];
kk[2] = T0[(tk[ 2 ] >>> 24) ] ^
T1[(tk[ 1 ] >>> 16) & 0xFF] ^
T2[(tk[ 0 ] >>> 8) & 0xFF] ^
T3[ tk[N-1] & 0xFF];
kk[3] = T0[(tk[ 3 ] >>> 24) ] ^
T1[(tk[ 2 ] >>> 16) & 0xFF] ^
T2[(tk[ 1 ] >>> 8) & 0xFF] ^
T3[ tk[ 0 ] & 0xFF];
for (i = 4; i < N; i++) {
kk[i] = T0[ tk[i ] >>> 24 ] ^
T1[(tk[i-1] >>> 16) & 0xFF] ^
T2[(tk[i-2] >>> 8) & 0xFF] ^
T3[ tk[i-3] & 0xFF];
}
// apply sigma (affine addition) to round constant
tk[0] = rc[r-1] ^ kk[0];
for (i = 1; i < N; i++) {
tk[i] = kk[i];
}
}
// phi = key selection function
tt = tk[N-1];
k0 = T4[ tt >>> 24 ];
k1 = T4[(tt >>> 16) & 0xFF];
k2 = T4[(tt >>> 8) & 0xFF];
k3 = T4[ tt & 0xFF];
for (k = N-2; k >= 0; k--) {
tt = tk[k];
k0 = T4[ tt >>> 24 ] ^
(T5[(k0 >>> 24) & 0xFF] & 0xFF000000) ^
(T5[(k0 >>> 16) & 0xFF] & 0x00FF0000) ^
(T5[(k0 >>> 8) & 0xFF] & 0x0000FF00) ^
(T5[ k0 & 0xFF] & 0x000000FF);
k1 = T4[(tt >>> 16) & 0xFF] ^
(T5[(k1 >>> 24) & 0xFF] & 0xFF000000) ^
(T5[(k1 >>> 16) & 0xFF] & 0x00FF0000) ^
(T5[(k1 >>> 8) & 0xFF] & 0x0000FF00) ^
(T5[ k1 & 0xFF] & 0x000000FF);
k2 = T4[(tt >>> 8) & 0xFF] ^
(T5[(k2 >>> 24) & 0xFF] & 0xFF000000) ^
(T5[(k2 >>> 16) & 0xFF] & 0x00FF0000) ^
(T5[(k2 >>> 8) & 0xFF] & 0x0000FF00) ^
(T5[(k2 ) & 0xFF] & 0x000000FF);
k3 = T4[ tt & 0xFF] ^
(T5[(k3 >>> 24) & 0xFF] & 0xFF000000) ^
(T5[(k3 >>> 16) & 0xFF] & 0x00FF0000) ^
(T5[(k3 >>> 8) & 0xFF] & 0x0000FF00) ^
(T5[ k3 & 0xFF] & 0x000000FF);
}
Ke[r][0] = k0;
Ke[r][1] = k1;
Ke[r][2] = k2;
Ke[r][3] = k3;
if (r == 0 || r == R) {
Kd[R-r][0] = k0;
Kd[R-r][1] = k1;
Kd[R-r][2] = k2;
Kd[R-r][3] = k3;
} else {
Kd[R-r][0] = T0[S[ k0 >>> 24 ] & 0xFF] ^
T1[S[(k0 >>> 16) & 0xFF] & 0xFF] ^
T2[S[(k0 >>> 8) & 0xFF] & 0xFF] ^
T3[S[ k0 & 0xFF] & 0xFF];
Kd[R-r][1] = T0[S[ k1 >>> 24 ] & 0xFF] ^
T1[S[(k1 >>> 16) & 0xFF] & 0xFF] ^
T2[S[(k1 >>> 8) & 0xFF] & 0xFF] ^
T3[S[ k1 & 0xFF] & 0xFF];
Kd[R-r][2] = T0[S[ k2 >>> 24 ] & 0xFF] ^
T1[S[(k2 >>> 16) & 0xFF] & 0xFF] ^
T2[S[(k2 >>> 8) & 0xFF] & 0xFF] ^
T3[S[ k2 & 0xFF] & 0xFF];
Kd[R-r][3] = T0[S[ k3 >>> 24 ] & 0xFF] ^
T1[S[(k3 >>> 16) & 0xFF] & 0xFF] ^
T2[S[(k3 >>> 8) & 0xFF] & 0xFF] ^
T3[S[ k3 & 0xFF] & 0xFF];
}
}
if (DEBUG && debuglevel > 8) {
System.out.println();
System.out.println("Key schedule");
System.out.println();
System.out.println("Ke[]:");
for (r = 0; r < R+1; r++) {
System.out.print("#"+r+": ");
for (j = 0; j < 4; j++)
System.out.print("0x"+Util.toString(Ke[r][j])+", ");
System.out.println();
}
System.out.println();
System.out.println("Kd[]:");
for (r = 0; r < R+1; r++) {
System.out.print("#"+r+": ");
for (j = 0; j < 4; j++)
System.out.print("0x"+Util.toString(Kd[r][j])+", ");
System.out.println();
}
System.out.println();
}
return new Object[] {Ke, Kd};
}
public void encrypt(byte[] in, int i, byte[] out, int j, Object k, int bs) {
if (bs != DEFAULT_BLOCK_SIZE) {
throw new IllegalArgumentException();
}
int[][] K = (int[][])((Object[]) k)[0];
anubis(in, i, out, j, K);
}
public void decrypt(byte[] in, int i, byte[] out, int j, Object k, int bs) {
if (bs != DEFAULT_BLOCK_SIZE) {
throw new IllegalArgumentException();
}
int[][] K = (int[][])((Object[]) k)[1];
anubis(in, i, out, j, K);
}
public boolean selfTest() {
if (valid == null) {
boolean result = super.selfTest(); // do symmetry tests
if (result) {
result = testKat(KAT_KEY, KAT_CT);
}
valid = new Boolean(result);
}
return valid.booleanValue();
}
}