![JAR search and dependency download from the Maven repository](/logo.png)
gnu.crypto.cipher.Rijndael Maven / Gradle / Ivy
The newest version!
package gnu.crypto.cipher;
// ----------------------------------------------------------------------------
// $Id: Rijndael.java,v 1.8 2003/04/28 10:30:54 raif Exp $
//
// Copyright (C) 2001, 2002, 2003, Free Software Foundation, Inc.
//
// This file is part of GNU Crypto.
//
// GNU Crypto is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2, or (at your option)
// any later version.
//
// GNU Crypto is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; see the file COPYING. If not, write to the
//
// Free Software Foundation Inc.,
// 59 Temple Place - Suite 330,
// Boston, MA 02111-1307
// USA
//
// Linking this library statically or dynamically with other modules is
// making a combined work based on this library. Thus, the terms and
// conditions of the GNU General Public License cover the whole
// combination.
//
// As a special exception, the copyright holders of this library give
// you permission to link this library with independent modules to
// produce an executable, regardless of the license terms of these
// independent modules, and to copy and distribute the resulting
// executable under terms of your choice, provided that you also meet,
// for each linked independent module, the terms and conditions of the
// license of that module. An independent module is a module which is
// not derived from or based on this library. If you modify this
// library, you may extend this exception to your version of the
// library, but you are not obligated to do so. If you do not wish to
// do so, delete this exception statement from your version.
// ----------------------------------------------------------------------------
import gnu.crypto.Registry;
import gnu.crypto.util.Util;
//import java.io.PrintWriter;
import java.security.InvalidKeyException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Iterator;
/**
* Rijndael --pronounced Reindaal-- is the AES. It is a variable block-size
* (128-, 192- and 256-bit), variable key-size (128-, 192- and 256-bit)
* symmetric key block cipher.
*
* References:
*
*
*
* @version $Revision: 1.8 $
*/
public final class Rijndael extends BaseCipher {
// Debugging methods and variables
// -------------------------------------------------------------------------
// private static final String NAME = "rijndael";
private static final boolean DEBUG = false;
private static final int debuglevel = 9;
// private static final PrintWriter err = new PrintWriter(System.out, true);
// private static void debug(String s) {
// err.println(">>> "+NAME+": "+s);
// }
// Constants and variables
// -------------------------------------------------------------------------
private static final int DEFAULT_BLOCK_SIZE = 16; // in bytes
private static final int DEFAULT_KEY_SIZE = 16; // in bytes
private static final String SS =
"\u637C\u777B\uF26B\u6FC5\u3001\u672B\uFED7\uAB76" +
"\uCA82\uC97D\uFA59\u47F0\uADD4\uA2AF\u9CA4\u72C0" +
"\uB7FD\u9326\u363F\uF7CC\u34A5\uE5F1\u71D8\u3115" +
"\u04C7\u23C3\u1896\u059A\u0712\u80E2\uEB27\uB275" +
"\u0983\u2C1A\u1B6E\u5AA0\u523B\uD6B3\u29E3\u2F84" +
"\u53D1\u00ED\u20FC\uB15B\u6ACB\uBE39\u4A4C\u58CF" +
"\uD0EF\uAAFB\u434D\u3385\u45F9\u027F\u503C\u9FA8" +
"\u51A3\u408F\u929D\u38F5\uBCB6\uDA21\u10FF\uF3D2" +
"\uCD0C\u13EC\u5F97\u4417\uC4A7\u7E3D\u645D\u1973" +
"\u6081\u4FDC\u222A\u9088\u46EE\uB814\uDE5E\u0BDB" +
"\uE032\u3A0A\u4906\u245C\uC2D3\uAC62\u9195\uE479" +
"\uE7C8\u376D\u8DD5\u4EA9\u6C56\uF4EA\u657A\uAE08" +
"\uBA78\u252E\u1CA6\uB4C6\uE8DD\u741F\u4BBD\u8B8A" +
"\u703E\uB566\u4803\uF60E\u6135\u57B9\u86C1\u1D9E" +
"\uE1F8\u9811\u69D9\u8E94\u9B1E\u87E9\uCE55\u28DF" +
"\u8CA1\u890D\uBFE6\u4268\u4199\u2D0F\uB054\uBB16";
private static final byte[] S = new byte[256];
private static final byte[] Si = new byte[256];
private static final int[] T1 = new int[256];
private static final int[] T2 = new int[256];
private static final int[] T3 = new int[256];
private static final int[] T4 = new int[256];
private static final int[] T5 = new int[256];
private static final int[] T6 = new int[256];
private static final int[] T7 = new int[256];
private static final int[] T8 = new int[256];
private static final int[] U1 = new int[256];
private static final int[] U2 = new int[256];
private static final int[] U3 = new int[256];
private static final int[] U4 = new int[256];
private static final byte[] rcon = new byte[30];
private static final int[][][] shifts = new int[][][] {
{ {0, 0}, {1, 3}, {2, 2}, {3, 1} },
{ {0, 0}, {1, 5}, {2, 4}, {3, 3} },
{ {0, 0}, {1, 7}, {3, 5}, {4, 4} }
};
/**
* KAT vector (from ecb_vk):
* I=96
* KEY=0000000000000000000000010000000000000000000000000000000000000000
* CT=E44429474D6FC3084EB2A6B8B46AF754
*/
private static final byte[] KAT_KEY =
Util.toBytesFromString("0000000000000000000000010000000000000000000000000000000000000000");
private static final byte[] KAT_CT =
Util.toBytesFromString("E44429474D6FC3084EB2A6B8B46AF754");
/** caches the result of the correctness test, once executed. */
private static Boolean valid;
// Static code - to intialise lookup tables --------------------------------
static {
long time = System.currentTimeMillis();
int ROOT = 0x11B;
int i, j = 0;
// S-box, inverse S-box, T-boxes, U-boxes
int s, s2, s3, i2, i4, i8, i9, ib, id, ie, t;
char c;
for (i = 0; i < 256; i++) {
c = SS.charAt(i >>> 1);
S[i] = (byte)(((i & 1) == 0) ? c >>> 8 : c & 0xFF);
s = S[i] & 0xFF;
Si[s] = (byte)i;
s2 = s << 1;
if (s2 >= 0x100) {
s2 ^= ROOT;
}
s3 = s2 ^ s;
i2 = i << 1;
if (i2 >= 0x100) {
i2 ^= ROOT;
}
i4 = i2 << 1;
if (i4 >= 0x100) {
i4 ^= ROOT;
}
i8 = i4 << 1;
if (i8 >= 0x100) {
i8 ^= ROOT;
}
i9 = i8 ^ i;
ib = i9 ^ i2;
id = i9 ^ i4;
ie = i8 ^ i4 ^ i2;
T1[i] = t = (s2 << 24) | (s << 16) | (s << 8) | s3;
T2[i] = (t >>> 8) | (t << 24);
T3[i] = (t >>> 16) | (t << 16);
T4[i] = (t >>> 24) | (t << 8);
T5[s] = U1[i] = t = (ie << 24) | (i9 << 16) | (id << 8) | ib;
T6[s] = U2[i] = (t >>> 8) | (t << 24);
T7[s] = U3[i] = (t >>> 16) | (t << 16);
T8[s] = U4[i] = (t >>> 24) | (t << 8);
}
//
// round constants
//
int r = 1;
rcon[0] = 1;
for (i = 1; i < 30; i++) {
r <<= 1;
if (r >= 0x100) {
r ^= ROOT;
}
rcon[i] = (byte)r;
}
time = System.currentTimeMillis() - time;
if (DEBUG && debuglevel > 8) {
System.out.println("==========");
System.out.println();
System.out.println("Static Data");
System.out.println();
System.out.println("S[]:");
for (i = 0; i < 16; i++) {
for (j = 0; j < 16; j++) {
System.out.print("0x"+Util.toString(S[i*16+j])+", ");
}
System.out.println();
}
System.out.println();
System.out.println("Si[]:");
for (i = 0; i < 16; i++) {
for (j = 0; j < 16; j++) {
System.out.print("0x"+Util.toString(Si[i*16+j])+", ");
}
System.out.println();
}
System.out.println();
System.out.println("T1[]:");
for (i = 0; i < 64; i++) {
for (j = 0; j < 4; j++) {
System.out.print("0x"+Util.toString(T1[i*4+j])+", ");
}
System.out.println();
}
System.out.println();
System.out.println("T2[]:");
for (i = 0; i < 64; i++) {
for (j = 0; j < 4; j++) {
System.out.print("0x"+Util.toString(T2[i*4+j])+", ");
}
System.out.println();
}
System.out.println();
System.out.println("T3[]:");
for (i = 0; i < 64; i++) {
for (j = 0; j < 4; j++) {
System.out.print("0x"+Util.toString(T3[i*4+j])+", ");
}
System.out.println();
}
System.out.println();
System.out.println("T4[]:");
for (i = 0; i < 64; i++) {
for (j = 0; j < 4; j++) {
System.out.print("0x"+Util.toString(T4[i*4+j])+", ");
}
System.out.println();
}
System.out.println();
System.out.println("T5[]:");
for (i = 0; i < 64; i++) {
for (j = 0; j < 4; j++) {
System.out.print("0x"+Util.toString(T5[i*4+j])+", ");
}
System.out.println();
}
System.out.println();
System.out.println("T6[]:");
for (i = 0; i < 64; i++) {
for (j = 0; j < 4; j++) {
System.out.print("0x"+Util.toString(T6[i*4+j])+", ");
}
System.out.println();
}
System.out.println();
System.out.println("T7[]:");
for (i = 0; i < 64; i++) {
for (j = 0; j < 4; j++) {
System.out.print("0x"+Util.toString(T7[i*4+j])+", ");
}
System.out.println();
}
System.out.println();
System.out.println("T8[]:");
for (i = 0; i < 64; i++) {
for (j = 0; j < 4; j++) {
System.out.print("0x"+Util.toString(T8[i*4+j])+", ");
}
System.out.println();
}
System.out.println();
System.out.println("U1[]:");
for (i = 0; i < 64; i++) {
for (j = 0; j < 4; j++) {
System.out.print("0x"+Util.toString(U1[i*4+j])+", ");
}
System.out.println();
}
System.out.println();
System.out.println("U2[]:");
for (i = 0; i < 64; i++) {
for (j = 0; j < 4; j++) {
System.out.print("0x"+Util.toString(U2[i*4+j])+", ");
}
System.out.println();
}
System.out.println();
System.out.println("U3[]:");
for (i = 0; i < 64; i++) {
for (j = 0; j < 4; j++) {
System.out.print("0x"+Util.toString(U3[i*4+j])+", ");
}
System.out.println();
}
System.out.println();
System.out.println("U4[]:");
for (i = 0; i < 64; i++) {
for (j = 0; j < 4; j++) {
System.out.println("0x"+Util.toString(U4[i*4+j])+", ");
}
System.out.println();
}
System.out.println();
System.out.println("rcon[]:");
for (i = 0; i < 5; i++){
for (j = 0; j < 6; j++) {
System.out.print("0x"+Util.toString(rcon[i*6+j])+", ");
}
System.out.println();
}
System.out.println();
System.out.println("Total initialization time: "+time+" ms.");
System.out.println();
}
}
// Constructor(s)
// -------------------------------------------------------------------------
/** Trivial 0-arguments constructor. */
public Rijndael() {
super(Registry.RIJNDAEL_CIPHER, DEFAULT_BLOCK_SIZE, DEFAULT_KEY_SIZE);
}
// Class methods
// -------------------------------------------------------------------------
/**
* Returns the number of rounds for a given Rijndael's key and block
* sizes.
*
* @param ks the size of the user key material in bytes.
* @param bs the desired block size in bytes.
* @return the number of rounds for a given Rijndael's key and block sizes.
*/
public static int getRounds(int ks, int bs) {
switch (ks) {
case 16:
return bs == 16 ? 10 : (bs == 24 ? 12 : 14);
case 24:
return bs != 32 ? 12 : 14;
default: // 32 bytes = 256 bits
return 14;
}
}
private static void
rijndaelEncrypt(byte[] in, int inOffset, byte[] out, int outOffset,
Object sessionKey, int bs) {
Object[] sKey = (Object[]) sessionKey; // extract encryption round keys
int[][] Ke = (int[][]) sKey[0];
int BC = bs / 4;
int ROUNDS = Ke.length - 1;
int SC = BC == 4 ? 0 : (BC == 6 ? 1 : 2);
int s1 = shifts[SC][1][0];
int s2 = shifts[SC][2][0];
int s3 = shifts[SC][3][0];
int[] a = new int[BC];
int[] t = new int[BC]; // temporary work array
int i, tt;
for (i = 0; i < BC; i++) { // plaintext to ints + key
t[i] = ( in[inOffset++] << 24 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset++] & 0xFF) ) ^ Ke[0][i];
}
for (int r = 1; r < ROUNDS; r++) { // apply round transforms
for (i = 0; i < BC; i++) {
a[i] = (T1[(t[ i ] >>> 24) ] ^
T2[(t[(i + s1) % BC] >>> 16) & 0xFF] ^
T3[(t[(i + s2) % BC] >>> 8) & 0xFF] ^
T4[ t[(i + s3) % BC] & 0xFF] ) ^ Ke[r][i];
}
System.arraycopy(a, 0, t, 0, BC);
if (DEBUG && debuglevel > 6) {
System.out.println("CT"+r+"="+Util.toString(t));
}
}
for (i = 0; i < BC; i++) { // last round is special
tt = Ke[ROUNDS][i];
out[outOffset++] = (byte)(S[(t[ i ] >>> 24) ] ^ (tt >>> 24));
out[outOffset++] = (byte)(S[(t[(i + s1) % BC] >>> 16) & 0xFF] ^ (tt >>> 16));
out[outOffset++] = (byte)(S[(t[(i + s2) % BC] >>> 8) & 0xFF] ^ (tt >>> 8));
out[outOffset++] = (byte)(S[ t[(i + s3) % BC] & 0xFF] ^ tt );
}
if (DEBUG && debuglevel > 6) {
System.out.println("CT="+Util.toString(out, outOffset-bs+1, bs));
System.out.println();
}
}
private static void
rijndaelDecrypt(byte[] in, int inOffset, byte[] out, int outOffset,
Object sessionKey, int bs) {
Object[] sKey = (Object[]) sessionKey; // extract decryption round keys
int[][] Kd = (int[][]) sKey[1];
int BC = bs / 4;
int ROUNDS = Kd.length - 1;
int SC = BC == 4 ? 0 : (BC == 6 ? 1 : 2);
int s1 = shifts[SC][1][1];
int s2 = shifts[SC][2][1];
int s3 = shifts[SC][3][1];
int[] a = new int[BC];
int[] t = new int[BC]; // temporary work array
int i, tt;
for (i = 0; i < BC; i++) { // ciphertext to ints + key
t[i] = ( in[inOffset++] << 24 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset++] & 0xFF) ) ^ Kd[0][i];
}
for (int r = 1; r < ROUNDS; r++) { // apply round transforms
for (i = 0; i < BC; i++) {
a[i] = (T5[(t[ i ] >>> 24) ] ^
T6[(t[(i + s1) % BC] >>> 16) & 0xFF] ^
T7[(t[(i + s2) % BC] >>> 8) & 0xFF] ^
T8[ t[(i + s3) % BC] & 0xFF] ) ^ Kd[r][i];
}
System.arraycopy(a, 0, t, 0, BC);
if (DEBUG && debuglevel > 6) {
System.out.println("PT"+r+"="+Util.toString(t));
}
}
for (i = 0; i < BC; i++) { // last round is special
tt = Kd[ROUNDS][i];
out[outOffset++] = (byte)(Si[(t[ i ] >>> 24) ] ^ (tt >>> 24));
out[outOffset++] = (byte)(Si[(t[(i + s1) % BC] >>> 16) & 0xFF] ^ (tt >>> 16));
out[outOffset++] = (byte)(Si[(t[(i + s2) % BC] >>> 8) & 0xFF] ^ (tt >>> 8));
out[outOffset++] = (byte)(Si[ t[(i + s3) % BC] & 0xFF] ^ tt );
}
if (DEBUG && debuglevel > 6) {
System.out.println("PT="+Util.toString(out, outOffset-bs+1, bs));
System.out.println();
}
}
private static void
aesEncrypt(byte[] in, int i, byte[] out, int j, Object key) {
int[][] Ke = (int[][]) ((Object[]) key)[0]; // extract encryption round keys
int ROUNDS = Ke.length - 1;
int[] Ker = Ke[0];
// plaintext to ints + key
int t0 = ( in[i++] << 24 |
(in[i++] & 0xFF) << 16 |
(in[i++] & 0xFF) << 8 |
(in[i++] & 0xFF) ) ^ Ker[0];
int t1 = ( in[i++] << 24 |
(in[i++] & 0xFF) << 16 |
(in[i++] & 0xFF) << 8 |
(in[i++] & 0xFF) ) ^ Ker[1];
int t2 = ( in[i++] << 24 |
(in[i++] & 0xFF) << 16 |
(in[i++] & 0xFF) << 8 |
(in[i++] & 0xFF) ) ^ Ker[2];
int t3 = ( in[i++] << 24 |
(in[i++] & 0xFF) << 16 |
(in[i++] & 0xFF) << 8 |
(in[i++] & 0xFF) ) ^ Ker[3];
int a0, a1, a2, a3;
for (int r = 1; r < ROUNDS; r++) { // apply round transforms
Ker = Ke[r];
a0 = (T1[(t0 >>> 24) ] ^
T2[(t1 >>> 16) & 0xFF] ^
T3[(t2 >>> 8) & 0xFF] ^
T4[ t3 & 0xFF] ) ^ Ker[0];
a1 = (T1[(t1 >>> 24) ] ^
T2[(t2 >>> 16) & 0xFF] ^
T3[(t3 >>> 8) & 0xFF] ^
T4[ t0 & 0xFF] ) ^ Ker[1];
a2 = (T1[(t2 >>> 24) ] ^
T2[(t3 >>> 16) & 0xFF] ^
T3[(t0 >>> 8) & 0xFF] ^
T4[ t1 & 0xFF] ) ^ Ker[2];
a3 = (T1[(t3 >>> 24) ] ^
T2[(t0 >>> 16) & 0xFF] ^
T3[(t1 >>> 8) & 0xFF] ^
T4[ t2 & 0xFF] ) ^ Ker[3];
t0 = a0;
t1 = a1;
t2 = a2;
t3 = a3;
if (DEBUG && debuglevel > 6) {
System.out.println("CT"+r+"="+Util.toString(t0)+Util.toString(t1)
+Util.toString(t2)+Util.toString(t3));
}
}
// last round is special
Ker = Ke[ROUNDS];
int tt = Ker[0];
out[j++] = (byte)(S[(t0 >>> 24) ] ^ (tt >>> 24));
out[j++] = (byte)(S[(t1 >>> 16) & 0xFF] ^ (tt >>> 16));
out[j++] = (byte)(S[(t2 >>> 8) & 0xFF] ^ (tt >>> 8));
out[j++] = (byte)(S[ t3 & 0xFF] ^ tt );
tt = Ker[1];
out[j++] = (byte)(S[(t1 >>> 24) ] ^ (tt >>> 24));
out[j++] = (byte)(S[(t2 >>> 16) & 0xFF] ^ (tt >>> 16));
out[j++] = (byte)(S[(t3 >>> 8) & 0xFF] ^ (tt >>> 8));
out[j++] = (byte)(S[ t0 & 0xFF] ^ tt );
tt = Ker[2];
out[j++] = (byte)(S[(t2 >>> 24) ] ^ (tt >>> 24));
out[j++] = (byte)(S[(t3 >>> 16) & 0xFF] ^ (tt >>> 16));
out[j++] = (byte)(S[(t0 >>> 8) & 0xFF] ^ (tt >>> 8));
out[j++] = (byte)(S[ t1 & 0xFF] ^ tt );
tt = Ker[3];
out[j++] = (byte)(S[(t3 >>> 24) ] ^ (tt >>> 24));
out[j++] = (byte)(S[(t0 >>> 16) & 0xFF] ^ (tt >>> 16));
out[j++] = (byte)(S[(t1 >>> 8) & 0xFF] ^ (tt >>> 8));
out[j++] = (byte)(S[ t2 & 0xFF] ^ tt );
if (DEBUG && debuglevel > 6) {
System.out.println("CT="+Util.toString(out, j-15, 16));
System.out.println();
}
}
private static void
aesDecrypt(byte[] in, int i, byte[] out, int j, Object key) {
int[][] Kd = (int[][]) ((Object[]) key)[1]; // extract decryption round keys
int ROUNDS = Kd.length - 1;
int[] Kdr = Kd[0];
// ciphertext to ints + key
int t0 = ( in[i++] << 24 |
(in[i++] & 0xFF) << 16 |
(in[i++] & 0xFF) << 8 |
(in[i++] & 0xFF) ) ^ Kdr[0];
int t1 = ( in[i++] << 24 |
(in[i++] & 0xFF) << 16 |
(in[i++] & 0xFF) << 8 |
(in[i++] & 0xFF) ) ^ Kdr[1];
int t2 = ( in[i++] << 24 |
(in[i++] & 0xFF) << 16 |
(in[i++] & 0xFF) << 8 |
(in[i++] & 0xFF) ) ^ Kdr[2];
int t3 = ( in[i++] << 24 |
(in[i++] & 0xFF) << 16 |
(in[i++] & 0xFF) << 8 |
(in[i++] & 0xFF) ) ^ Kdr[3];
int a0, a1, a2, a3;
for (int r = 1; r < ROUNDS; r++) { // apply round transforms
Kdr = Kd[r];
a0 = (T5[(t0 >>> 24) ] ^
T6[(t3 >>> 16) & 0xFF] ^
T7[(t2 >>> 8) & 0xFF] ^
T8[ t1 & 0xFF] ) ^ Kdr[0];
a1 = (T5[(t1 >>> 24) ] ^
T6[(t0 >>> 16) & 0xFF] ^
T7[(t3 >>> 8) & 0xFF] ^
T8[ t2 & 0xFF] ) ^ Kdr[1];
a2 = (T5[(t2 >>> 24) ] ^
T6[(t1 >>> 16) & 0xFF] ^
T7[(t0 >>> 8) & 0xFF] ^
T8[ t3 & 0xFF] ) ^ Kdr[2];
a3 = (T5[(t3 >>> 24) ] ^
T6[(t2 >>> 16) & 0xFF] ^
T7[(t1 >>> 8) & 0xFF] ^
T8[ t0 & 0xFF] ) ^ Kdr[3];
t0 = a0;
t1 = a1;
t2 = a2;
t3 = a3;
if (DEBUG && debuglevel > 6) {
System.out.println("PT"+r+"="+Util.toString(t0)+Util.toString(t1)
+Util.toString(t2)+Util.toString(t3));
}
}
// last round is special
Kdr = Kd[ROUNDS];
int tt = Kdr[0];
out[j++] = (byte)(Si[(t0 >>> 24) ] ^ (tt >>> 24));
out[j++] = (byte)(Si[(t3 >>> 16) & 0xFF] ^ (tt >>> 16));
out[j++] = (byte)(Si[(t2 >>> 8) & 0xFF] ^ (tt >>> 8));
out[j++] = (byte)(Si[ t1 & 0xFF] ^ tt );
tt = Kdr[1];
out[j++] = (byte)(Si[(t1 >>> 24) ] ^ (tt >>> 24));
out[j++] = (byte)(Si[(t0 >>> 16) & 0xFF] ^ (tt >>> 16));
out[j++] = (byte)(Si[(t3 >>> 8) & 0xFF] ^ (tt >>> 8));
out[j++] = (byte)(Si[ t2 & 0xFF] ^ tt );
tt = Kdr[2];
out[j++] = (byte)(Si[(t2 >>> 24) ] ^ (tt >>> 24));
out[j++] = (byte)(Si[(t1 >>> 16) & 0xFF] ^ (tt >>> 16));
out[j++] = (byte)(Si[(t0 >>> 8) & 0xFF] ^ (tt >>> 8));
out[j++] = (byte)(Si[ t3 & 0xFF] ^ tt );
tt = Kdr[3];
out[j++] = (byte)(Si[(t3 >>> 24) ] ^ (tt >>> 24));
out[j++] = (byte)(Si[(t2 >>> 16) & 0xFF] ^ (tt >>> 16));
out[j++] = (byte)(Si[(t1 >>> 8) & 0xFF] ^ (tt >>> 8));
out[j++] = (byte)(Si[ t0 & 0xFF] ^ tt );
if (DEBUG && debuglevel > 6) {
System.out.println("PT="+Util.toString(out, j-15, 16));
System.out.println();
}
}
// Instance methods
// -------------------------------------------------------------------------
// java.lang.Cloneable interface implementation ----------------------------
public Object clone() {
Rijndael result = new Rijndael();
result.currentBlockSize = this.currentBlockSize;
return result;
}
// IBlockCipherSpi interface implementation --------------------------------
public Iterator blockSizes() {
ArrayList al = new ArrayList();
al.add(new Integer(128 / 8));
al.add(new Integer(192 / 8));
al.add(new Integer(256 / 8));
return Collections.unmodifiableList(al).iterator();
}
public Iterator keySizes() {
ArrayList al = new ArrayList();
al.add(new Integer(128 / 8));
al.add(new Integer(192 / 8));
al.add(new Integer(256 / 8));
return Collections.unmodifiableList(al).iterator();
}
/**
* Expands a user-supplied key material into a session key for a designated
* block size.
*
* @param k the 128/192/256-bit user-key to use.
* @param bs the block size in bytes of this Rijndael.
* @return an Object encapsulating the session key.
* @exception IllegalArgumentException if the block size is not 16, 24 or 32.
* @exception InvalidKeyException if the key data is invalid.
*/
public Object makeKey(byte[] k, int bs) throws InvalidKeyException {
if (k == null) {
throw new InvalidKeyException("Empty key");
}
if (!(k.length == 16 || k.length == 24 || k.length == 32)) {
throw new InvalidKeyException("Incorrect key length");
}
if (!(bs == 16 || bs == 24 || bs == 32)) {
throw new IllegalArgumentException();
}
int ROUNDS = getRounds(k.length, bs);
int BC = bs / 4;
int[][] Ke = new int[ROUNDS + 1][BC]; // encryption round keys
int[][] Kd = new int[ROUNDS + 1][BC]; // decryption round keys
int ROUND_KEY_COUNT = (ROUNDS + 1) * BC;
int KC = k.length / 4;
int[] tk = new int[KC];
int i, j;
// copy user material bytes into temporary ints
for (i = 0, j = 0; i < KC; ) {
tk[i++] = k[j++] << 24 |
(k[j++] & 0xFF) << 16 |
(k[j++] & 0xFF) << 8 |
(k[j++] & 0xFF);
}
// copy values into round key arrays
int t = 0;
for (j = 0; (j < KC) && (t < ROUND_KEY_COUNT); j++, t++) {
Ke[t / BC][t % BC] = tk[j];
Kd[ROUNDS - (t / BC)][t % BC] = tk[j];
}
int tt, rconpointer = 0;
while (t < ROUND_KEY_COUNT) {
// extrapolate using phi (the round key evolution function)
tt = tk[KC - 1];
tk[0] ^= (S[(tt >>> 16) & 0xFF] & 0xFF) << 24 ^
(S[(tt >>> 8) & 0xFF] & 0xFF) << 16 ^
(S[ tt & 0xFF] & 0xFF) << 8 ^
(S[(tt >>> 24) ] & 0xFF) ^
rcon[rconpointer++] << 24;
if (KC != 8) {
for (i = 1, j = 0; i < KC; ) {
tk[i++] ^= tk[j++];
}
} else {
for (i = 1, j = 0; i < KC / 2; ) {
tk[i++] ^= tk[j++];
}
tt = tk[KC / 2 - 1];
tk[KC / 2] ^= (S[ tt & 0xFF] & 0xFF) ^
(S[(tt >>> 8) & 0xFF] & 0xFF) << 8 ^
(S[(tt >>> 16) & 0xFF] & 0xFF) << 16 ^
S[(tt >>> 24) & 0xFF] << 24;
for (j = KC / 2, i = j + 1; i < KC; ) {
tk[i++] ^= tk[j++];
}
}
// copy values into round key arrays
for (j = 0; (j < KC) && (t < ROUND_KEY_COUNT); j++, t++) {
Ke[t / BC][t % BC] = tk[j];
Kd[ROUNDS - (t / BC)][t % BC] = tk[j];
}
}
for (int r = 1; r < ROUNDS; r++) { // inverse MixColumn where needed
for (j = 0; j < BC; j++) {
tt = Kd[r][j];
Kd[r][j] = U1[(tt >>> 24) ] ^
U2[(tt >>> 16) & 0xFF] ^
U3[(tt >>> 8) & 0xFF] ^
U4[ tt & 0xFF];
}
}
return new Object[] {Ke, Kd};
}
public void encrypt(byte[] in, int i, byte[] out, int j, Object k, int bs) {
if (!(bs == 16 || bs == 24 || bs == 32)) {
throw new IllegalArgumentException();
}
if (bs == DEFAULT_BLOCK_SIZE) {
aesEncrypt(in, i, out, j, k);
} else {
rijndaelEncrypt(in, i, out, j, k, bs);
}
}
public void decrypt(byte[] in, int i, byte[] out, int j, Object k, int bs) {
if (!(bs == 16 || bs == 24 || bs == 32)) {
throw new IllegalArgumentException();
}
if (bs == DEFAULT_BLOCK_SIZE) {
aesDecrypt(in, i, out, j, k);
} else {
rijndaelDecrypt(in, i, out, j, k, bs);
}
}
public boolean selfTest() {
if (valid == null) {
boolean result = super.selfTest(); // do symmetry tests
if (result) {
result = testKat(KAT_KEY, KAT_CT);
}
valid = new Boolean(result);
}
return valid.booleanValue();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy