gnu.crypto.hash.Sha160 Maven / Gradle / Ivy
package gnu.crypto.hash;
// ----------------------------------------------------------------------------
// $Id: Sha160.java,v 1.9 2002/12/03 09:48:58 raif Exp $
//
// Copyright (C) 2001, 2002, Free Software Foundation, Inc.
//
// This file is part of GNU Crypto.
//
// GNU Crypto is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2, or (at your option)
// any later version.
//
// GNU Crypto is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; see the file COPYING. If not, write to the
//
// Free Software Foundation Inc.,
// 59 Temple Place - Suite 330,
// Boston, MA 02111-1307
// USA
//
// Linking this library statically or dynamically with other modules is
// making a combined work based on this library. Thus, the terms and
// conditions of the GNU General Public License cover the whole
// combination.
//
// As a special exception, the copyright holders of this library give
// you permission to link this library with independent modules to
// produce an executable, regardless of the license terms of these
// independent modules, and to copy and distribute the resulting
// executable under terms of your choice, provided that you also meet,
// for each linked independent module, the terms and conditions of the
// license of that module. An independent module is a module which is
// not derived from or based on this library. If you modify this
// library, you may extend this exception to your version of the
// library, but you are not obligated to do so. If you do not wish to
// do so, delete this exception statement from your version.
// ----------------------------------------------------------------------------
import gnu.crypto.Registry;
import gnu.crypto.util.Util;
/**
* The Secure Hash Algorithm (SHA-1) is required for use with the Digital
* Signature Algorithm (DSA) as specified in the Digital Signature Standard
* (DSS) and whenever a secure hash algorithm is required for federal
* applications. For a message of length less than 2^64 bits, the SHA-1
* produces a 160-bit condensed representation of the message called a message
* digest. The message digest is used during generation of a signature for the
* message. The SHA-1 is also used to compute a message digest for the received
* version of the message during the process of verifying the signature. Any
* change to the message in transit will, with very high probability, result in
* a different message digest, and the signature will fail to verify.
*
* The SHA-1 is designed to have the following properties: it is
* computationally infeasible to find a message which corresponds to a given
* message digest, or to find two different messages which produce the same
* message digest.
*
* References:
*
*
* - SECURE HASH
* STANDARD
* Federal Information, Processing Standards Publication 180-1, 1995 April 17.
*
*
*
* @version $Revision: 1.9 $
*/
public class Sha160 extends BaseHash {
// Constants and variables
// -------------------------------------------------------------------------
private static final int BLOCK_SIZE = 64; // inner block size in bytes
private static final String DIGEST0 = "A9993E364706816ABA3E25717850C26C9CD0D89D";
private static final int[] w = new int[80];
/** caches the result of the correctness test, once executed. */
private static Boolean valid;
/** 160-bit interim result. */
private int h0, h1, h2, h3, h4;
// Constructor(s)
// -------------------------------------------------------------------------
/** Trivial 0-arguments constructor. */
public Sha160() {
super(Registry.SHA160_HASH, 20, BLOCK_SIZE);
}
/**
* Private constructor for cloning purposes.
*
* @param md the instance to clone.
*/
private Sha160(Sha160 md) {
this();
this.h0 = md.h0;
this.h1 = md.h1;
this.h2 = md.h2;
this.h3 = md.h3;
this.h4 = md.h4;
this.count = md.count;
this.buffer = (byte[]) md.buffer.clone();
}
// Class methods
// -------------------------------------------------------------------------
public static final int[]
G(int hh0, int hh1, int hh2, int hh3, int hh4, byte[] in, int offset) {
// int[] w = new int[80];
// int i, T;
// for (i = 0; i < 16; i++) {
// w[i] = in[offset++] << 24 |
// (in[offset++] & 0xFF) << 16 |
// (in[offset++] & 0xFF) << 8 |
// (in[offset++] & 0xFF);
// }
// for (i = 16; i < 80; i++) {
// T = w[i-3] ^ w[i-8] ^ w[i-14] ^ w[i-16];
// w[i] = T << 1 | T >>> 31;
// }
// return sha(hh0, hh1, hh2, hh3, hh4, in, offset, w);
return sha(hh0, hh1, hh2, hh3, hh4, in, offset);
}
// Instance methods
// -------------------------------------------------------------------------
// java.lang.Cloneable interface implementation ----------------------------
public Object clone() {
return new Sha160(this);
}
// Implementation of concrete methods in BaseHash --------------------------
protected void transform(byte[] in, int offset) {
// int i, T;
// for (i = 0; i < 16; i++) {
// W[i] = in[offset++] << 24 |
// (in[offset++] & 0xFF) << 16 |
// (in[offset++] & 0xFF) << 8 |
// (in[offset++] & 0xFF);
// }
// for (i = 16; i < 80; i++) {
// T = W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16];
// W[i] = T << 1 | T >>> 31;
// }
// int[] result = sha(h0, h1, h2, h3, h4, in, offset, W);
int[] result = sha(h0, h1, h2, h3, h4, in, offset);
h0 = result[0];
h1 = result[1];
h2 = result[2];
h3 = result[3];
h4 = result[4];
}
protected byte[] padBuffer() {
int n = (int)(count % BLOCK_SIZE);
int padding = (n < 56) ? (56 - n) : (120 - n);
byte[] result = new byte[padding + 8];
// padding is always binary 1 followed by binary 0s
result[0] = (byte) 0x80;
// save number of bits, casting the long to an array of 8 bytes
long bits = count << 3;
result[padding++] = (byte)(bits >>> 56);
result[padding++] = (byte)(bits >>> 48);
result[padding++] = (byte)(bits >>> 40);
result[padding++] = (byte)(bits >>> 32);
result[padding++] = (byte)(bits >>> 24);
result[padding++] = (byte)(bits >>> 16);
result[padding++] = (byte)(bits >>> 8);
result[padding ] = (byte) bits;
return result;
}
protected byte[] getResult() {
byte[] result = new byte[] {
(byte)(h0 >>> 24), (byte)(h0 >>> 16), (byte)(h0 >>> 8), (byte) h0,
(byte)(h1 >>> 24), (byte)(h1 >>> 16), (byte)(h1 >>> 8), (byte) h1,
(byte)(h2 >>> 24), (byte)(h2 >>> 16), (byte)(h2 >>> 8), (byte) h2,
(byte)(h3 >>> 24), (byte)(h3 >>> 16), (byte)(h3 >>> 8), (byte) h3,
(byte)(h4 >>> 24), (byte)(h4 >>> 16), (byte)(h4 >>> 8), (byte) h4
};
return result;
}
protected void resetContext() {
// magic SHA-1/RIPEMD160 initialisation constants
h0 = 0x67452301;
h1 = 0xEFCDAB89;
h2 = 0x98BADCFE;
h3 = 0x10325476;
h4 = 0xC3D2E1F0;
}
public boolean selfTest() {
if (valid == null) {
Sha160 md = new Sha160();
md.update((byte) 0x61); // a
md.update((byte) 0x62); // b
md.update((byte) 0x63); // c
String result = Util.toString(md.digest());
valid = new Boolean(DIGEST0.equals(result));
}
return valid.booleanValue();
}
// SHA specific methods ----------------------------------------------------
private static final synchronized int[]
// sha(int hh0, int hh1, int hh2, int hh3, int hh4, byte[] in, int offset, int[] w) {
sha(int hh0, int hh1, int hh2, int hh3, int hh4, byte[] in, int offset) {
int A = hh0;
int B = hh1;
int C = hh2;
int D = hh3;
int E = hh4;
int r, T;
for (r = 0; r < 16; r++) {
w[r] = in[offset++] << 24 |
(in[offset++] & 0xFF) << 16 |
(in[offset++] & 0xFF) << 8 |
(in[offset++] & 0xFF);
}
for (r = 16; r < 80; r++) {
T = w[r-3] ^ w[r-8] ^ w[r-14] ^ w[r-16];
w[r] = T << 1 | T >>> 31;
}
// rounds 0-19
for (r = 0; r < 20; r++) {
T = (A << 5 | A >>> 27) + ((B & C) | (~B & D)) + E + w[r] + 0x5A827999;
E = D;
D = C;
C = B << 30 | B >>> 2;
B = A;
A = T;
}
// rounds 20-39
for (r = 20; r < 40; r++) {
T = (A << 5 | A >>> 27) + (B ^ C ^ D) + E + w[r] + 0x6ED9EBA1;
E = D;
D = C;
C = B << 30 | B >>> 2;
B = A;
A = T;
}
// rounds 40-59
for (r = 40; r < 60; r++) {
T = (A << 5 | A >>> 27) + (B & C | B & D | C & D) + E + w[r] + 0x8F1BBCDC;
E = D;
D = C;
C = B << 30 | B >>> 2;
B = A;
A = T;
}
// rounds 60-79
for (r = 60; r < 80; r++) {
T = (A << 5 | A >>> 27) + (B ^ C ^ D) + E + w[r] + 0xCA62C1D6;
E = D;
D = C;
C = B << 30 | B >>> 2;
B = A;
A = T;
}
return new int[] {hh0+A, hh1+B, hh2+C, hh3+D, hh4+E};
}
}