gnu.crypto.hash.Whirlpool Maven / Gradle / Ivy
The newest version!
package gnu.crypto.hash;
// ----------------------------------------------------------------------------
// $Id: Whirlpool.java,v 1.9 2003/06/11 12:25:59 raif Exp $
//
// Copyright (C) 2001, 2002, Free Software Foundation, Inc.
//
// This file is part of GNU Crypto.
//
// GNU Crypto is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2, or (at your option)
// any later version.
//
// GNU Crypto is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; see the file COPYING. If not, write to the
//
// Free Software Foundation Inc.,
// 59 Temple Place - Suite 330,
// Boston, MA 02111-1307
// USA
//
// Linking this library statically or dynamically with other modules is
// making a combined work based on this library. Thus, the terms and
// conditions of the GNU General Public License cover the whole
// combination.
//
// As a special exception, the copyright holders of this library give
// you permission to link this library with independent modules to
// produce an executable, regardless of the license terms of these
// independent modules, and to copy and distribute the resulting
// executable under terms of your choice, provided that you also meet,
// for each linked independent module, the terms and conditions of the
// license of that module. An independent module is a module which is
// not derived from or based on this library. If you modify this
// library, you may extend this exception to your version of the
// library, but you are not obligated to do so. If you do not wish to
// do so, delete this exception statement from your version.
// ----------------------------------------------------------------------------
import gnu.crypto.Registry;
import gnu.crypto.util.Util;
/**
* Whirlpool, a new 512-bit hashing function operating on messages less than
* 2 ** 256 bits in length. The function structure is designed according to the
* Wide Trail strategy and permits a wide variety of implementation trade-offs.
*
*
* IMPORTANT: This implementation is not thread-safe.
*
* References:
*
*
*
* @version $Revision: 1.9 $
*/
public final class Whirlpool extends BaseHash {
// Debugging methods and variables
// -------------------------------------------------------------------------
private static final boolean DEBUG = false;
private static final int debuglevel = 3;
// Constants and variables
// -------------------------------------------------------------------------
private static final int BLOCK_SIZE = 64; // inner block size in bytes
/** The digest of the 0-bit long message. */
private static final String DIGEST0 =
"470F0409ABAA446E49667D4EBE12A14387CEDBD10DD17B8243CAD550A089DC0F"+
"EEA7AA40F6C2AAAB71C6EBD076E43C7CFCA0AD32567897DCB5969861049A0F5A";
private static final int R = 10; // default number of rounds
private static final String Sd = // p. 19 [WHIRLPOOL]
"\u1823\uc6E8\u87B8\u014F\u36A6\ud2F5\u796F\u9152"+
"\u60Bc\u9B8E\uA30c\u7B35\u1dE0\ud7c2\u2E4B\uFE57"+
"\u1577\u37E5\u9FF0\u4AdA\u58c9\u290A\uB1A0\u6B85"+
"\uBd5d\u10F4\ucB3E\u0567\uE427\u418B\uA77d\u95d8"+
"\uFBEE\u7c66\udd17\u479E\ucA2d\uBF07\uAd5A\u8333"+
"\u6302\uAA71\uc819\u49d9\uF2E3\u5B88\u9A26\u32B0"+
"\uE90F\ud580\uBEcd\u3448\uFF7A\u905F\u2068\u1AAE"+
"\uB454\u9322\u64F1\u7312\u4008\uc3Ec\udBA1\u8d3d"+
"\u9700\ucF2B\u7682\ud61B\uB5AF\u6A50\u45F3\u30EF"+
"\u3F55\uA2EA\u65BA\u2Fc0\udE1c\uFd4d\u9275\u068A"+
"\uB2E6\u0E1F\u62d4\uA896\uF9c5\u2559\u8472\u394c"+
"\u5E78\u388c\ud1A5\uE261\uB321\u9c1E\u43c7\uFc04"+
"\u5199\u6d0d\uFAdF\u7E24\u3BAB\ucE11\u8F4E\uB7EB"+
"\u3c81\u94F7\uB913\u2cd3\uE76E\uc403\u5644\u7FA9"+
"\u2ABB\uc153\udc0B\u9d6c\u3174\uF646\uAc89\u14E1"+
"\u163A\u6909\u70B6\ud0Ed\ucc42\u98A4\u285c\uF886";
private static final long[] T0 = new long[256];
private static final long[] T1 = new long[256];
private static final long[] T2 = new long[256];
private static final long[] T3 = new long[256];
private static final long[] T4 = new long[256];
private static final long[] T5 = new long[256];
private static final long[] T6 = new long[256];
private static final long[] T7 = new long[256];
private static final long[] rc = new long[R];
/** caches the result of the correctness test, once executed. */
private static Boolean valid;
/** The 512-bit context as 8 longs. */
private long H0, H1, H2, H3, H4, H5, H6, H7;
/** Work area for computing the round key schedule. */
private long k00, k01, k02, k03, k04, k05, k06, k07;
private long Kr0, Kr1, Kr2, Kr3, Kr4, Kr5, Kr6, Kr7;
/** work area for transforming the 512-bit buffer. */
private long n0, n1, n2, n3, n4, n5, n6, n7;
private long nn0, nn1, nn2, nn3, nn4, nn5, nn6, nn7;
/** work area for holding block cipher's intermediate values. */
private long w0, w1, w2, w3, w4, w5, w6, w7;
// Static code - to intialise lookup tables --------------------------------
static {
long time = System.currentTimeMillis();
int ROOT = 0x11d; // para. 2.1 [WHIRLPOOL]
int i, r, j;
long s, s2, s3, s4, s5, s8, s9, t;
char c;
final byte[] S = new byte[256];
for (i = 0; i < 256; i++) {
c = Sd.charAt(i >>> 1);
s = ((i & 1) == 0 ? c >>> 8 : c) & 0xFFL;
s2 = s << 1;
if (s2 > 0xFFL) {
s2 ^= ROOT;
}
s3 = s2 ^ s;
s4 = s2 << 1;
if (s4 > 0xFFL) {
s4 ^= ROOT;
}
s5 = s4 ^ s;
s8 = s4 << 1;
if (s8 > 0xFFL) {
s8 ^= ROOT;
}
s9 = s8 ^ s;
S[i] = (byte) s;
T0[i] = t = s << 56 | s << 48 | s3 << 40 | s << 32 |
s5 << 24 | s8 << 16 | s9 << 8 | s5;
T1[i] = t >>> 8 | t << 56;
T2[i] = t >>> 16 | t << 48;
T3[i] = t >>> 24 | t << 40;
T4[i] = t >>> 32 | t << 32;
T5[i] = t >>> 40 | t << 24;
T6[i] = t >>> 48 | t << 16;
T7[i] = t >>> 56 | t << 8;
}
for (r = 1, i = 0, j = 0; r < R+1; r++) {
rc[i++] = (S[j++] & 0xFFL) << 56 | (S[j++] & 0xFFL) << 48 |
(S[j++] & 0xFFL) << 40 | (S[j++] & 0xFFL) << 32 |
(S[j++] & 0xFFL) << 24 | (S[j++] & 0xFFL) << 16 |
(S[j++] & 0xFFL) << 8 | (S[j++] & 0xFFL);
}
time = System.currentTimeMillis() - time;
if (DEBUG && debuglevel > 8) {
System.out.println("==========");
System.out.println();
System.out.println("Static data");
System.out.println();
System.out.println();
System.out.println("T0[]:");
for (i = 0 ;i < 64; i++){
for (j = 0; j < 4; j++) {
System.out.print("0x"+Util.toString(T0[i*4+j])+", ");
}
System.out.println();
}
System.out.println();
System.out.println("T1[]:");
for (i = 0 ;i < 64; i++){
for (j = 0; j < 4; j++) {
System.out.print("0x"+Util.toString(T1[i*4+j])+", ");
}
System.out.println();
}
System.out.println();
System.out.println("T2[]:");
for (i = 0 ;i < 64; i++){
for (j = 0; j < 4; j++) {
System.out.print("0x"+Util.toString(T2[i*4+j])+", ");
}
System.out.println();
}
System.out.println();
System.out.println("T3[]:");
for (i = 0 ;i < 64; i++){
for (j = 0; j < 4; j++) {
System.out.print("0x"+Util.toString(T3[i*4+j])+", ");
}
System.out.println();
}
System.out.println();
System.out.println("T4[]:");
for (i = 0 ;i < 64; i++){
for (j = 0; j < 4; j++) {
System.out.print("0x"+Util.toString(T4[i*4+j])+", ");
}
System.out.println();
}
System.out.println();
System.out.println("T5[]:");
for (i = 0 ;i < 64; i++){
for (j = 0; j < 4; j++) {
System.out.print("0x"+Util.toString(T5[i*4+j])+", ");
}
System.out.println();
}
System.out.println();
System.out.println("T6[]:");
for (i = 0 ;i < 64; i++){
for (j = 0; j < 4; j++) {
System.out.print("0x"+Util.toString(T5[i*4+j])+", ");
}
System.out.println();
}
System.out.println();
System.out.println("T7[]:");
for (i = 0 ;i < 64; i++){
for (j = 0; j < 4; j++) {
System.out.print("0x"+Util.toString(T5[i*4+j])+", ");
}
System.out.println();
}
System.out.println();
System.out.println("rc[]:");
for (i = 0; i < R; i++) {
System.out.println("0x"+Util.toString(rc[i]));
}
System.out.println();
System.out.println();
System.out.println("Total initialization time: "+time+" ms.");
System.out.println();
}
}
// Constructor(s)
// -------------------------------------------------------------------------
/** Trivial 0-arguments constructor. */
public Whirlpool() {
super(Registry.WHIRLPOOL_HASH, 20, BLOCK_SIZE);
}
/**
* Private constructor for cloning purposes.
*
* @param md the instance to clone.
*/
private Whirlpool(Whirlpool md) {
this();
this.H0 = md.H0;
this.H1 = md.H1;
this.H2 = md.H2;
this.H3 = md.H3;
this.H4 = md.H4;
this.H5 = md.H5;
this.H6 = md.H6;
this.H7 = md.H7;
this.count = md.count;
this.buffer = (byte[]) md.buffer.clone();
}
// Class methods
// -------------------------------------------------------------------------
// Instance methods
// -------------------------------------------------------------------------
// java.lang.Cloneable interface implementation ----------------------------
public Object clone() {
return (new Whirlpool(this));
}
// Implementation of concrete methods in BaseHash --------------------------
protected void transform(byte[] in, int offset) {
// apply mu to the input
n0 = (in[offset++] & 0xFFL) << 56 | (in[offset++] & 0xFFL) << 48 |
(in[offset++] & 0xFFL) << 40 | (in[offset++] & 0xFFL) << 32 |
(in[offset++] & 0xFFL) << 24 | (in[offset++] & 0xFFL) << 16 |
(in[offset++] & 0xFFL) << 8 | (in[offset++] & 0xFFL);
n1 = (in[offset++] & 0xFFL) << 56 | (in[offset++] & 0xFFL) << 48 |
(in[offset++] & 0xFFL) << 40 | (in[offset++] & 0xFFL) << 32 |
(in[offset++] & 0xFFL) << 24 | (in[offset++] & 0xFFL) << 16 |
(in[offset++] & 0xFFL) << 8 | (in[offset++] & 0xFFL);
n2 = (in[offset++] & 0xFFL) << 56 | (in[offset++] & 0xFFL) << 48 |
(in[offset++] & 0xFFL) << 40 | (in[offset++] & 0xFFL) << 32 |
(in[offset++] & 0xFFL) << 24 | (in[offset++] & 0xFFL) << 16 |
(in[offset++] & 0xFFL) << 8 | (in[offset++] & 0xFFL);
n3 = (in[offset++] & 0xFFL) << 56 | (in[offset++] & 0xFFL) << 48 |
(in[offset++] & 0xFFL) << 40 | (in[offset++] & 0xFFL) << 32 |
(in[offset++] & 0xFFL) << 24 | (in[offset++] & 0xFFL) << 16 |
(in[offset++] & 0xFFL) << 8 | (in[offset++] & 0xFFL);
n4 = (in[offset++] & 0xFFL) << 56 | (in[offset++] & 0xFFL) << 48 |
(in[offset++] & 0xFFL) << 40 | (in[offset++] & 0xFFL) << 32 |
(in[offset++] & 0xFFL) << 24 | (in[offset++] & 0xFFL) << 16 |
(in[offset++] & 0xFFL) << 8 | (in[offset++] & 0xFFL);
n5 = (in[offset++] & 0xFFL) << 56 | (in[offset++] & 0xFFL) << 48 |
(in[offset++] & 0xFFL) << 40 | (in[offset++] & 0xFFL) << 32 |
(in[offset++] & 0xFFL) << 24 | (in[offset++] & 0xFFL) << 16 |
(in[offset++] & 0xFFL) << 8 | (in[offset++] & 0xFFL);
n6 = (in[offset++] & 0xFFL) << 56 | (in[offset++] & 0xFFL) << 48 |
(in[offset++] & 0xFFL) << 40 | (in[offset++] & 0xFFL) << 32 |
(in[offset++] & 0xFFL) << 24 | (in[offset++] & 0xFFL) << 16 |
(in[offset++] & 0xFFL) << 8 | (in[offset++] & 0xFFL);
n7 = (in[offset++] & 0xFFL) << 56 | (in[offset++] & 0xFFL) << 48 |
(in[offset++] & 0xFFL) << 40 | (in[offset++] & 0xFFL) << 32 |
(in[offset++] & 0xFFL) << 24 | (in[offset++] & 0xFFL) << 16 |
(in[offset++] & 0xFFL) << 8 | (in[offset++] & 0xFFL);
// transform K into the key schedule Kr; 0 <= r <= R
k00 = H0;
k01 = H1;
k02 = H2;
k03 = H3;
k04 = H4;
k05 = H5;
k06 = H6;
k07 = H7;
nn0 = n0 ^ k00;
nn1 = n1 ^ k01;
nn2 = n2 ^ k02;
nn3 = n3 ^ k03;
nn4 = n4 ^ k04;
nn5 = n5 ^ k05;
nn6 = n6 ^ k06;
nn7 = n7 ^ k07;
// intermediate cipher output
w0 = w1 = w2 = w3 = w4 = w5 = w6 = w7 = 0L;
for (int r = 0; r < R; r++) {
// 1. compute intermediate round key schedule by applying ro[rc]
// to the previous round key schedule --rc being the round constant
Kr0 = T0[(int)((k00 >> 56) & 0xFFL)] ^ T1[(int)((k07 >> 48) & 0xFFL)] ^
T2[(int)((k06 >> 40) & 0xFFL)] ^ T3[(int)((k05 >> 32) & 0xFFL)] ^
T4[(int)((k04 >> 24) & 0xFFL)] ^ T5[(int)((k03 >> 16) & 0xFFL)] ^
T6[(int)((k02 >> 8) & 0xFFL)] ^ T7[(int)( k01 & 0xFFL)] ^
rc[r];
Kr1 = T0[(int)((k01 >> 56) & 0xFFL)] ^ T1[(int)((k00 >> 48) & 0xFFL)] ^
T2[(int)((k07 >> 40) & 0xFFL)] ^ T3[(int)((k06 >> 32) & 0xFFL)] ^
T4[(int)((k05 >> 24) & 0xFFL)] ^ T5[(int)((k04 >> 16) & 0xFFL)] ^
T6[(int)((k03 >> 8) & 0xFFL)] ^ T7[(int)( k02 & 0xFFL)];
Kr2 = T0[(int)((k02 >> 56) & 0xFFL)] ^ T1[(int)((k01 >> 48) & 0xFFL)] ^
T2[(int)((k00 >> 40) & 0xFFL)] ^ T3[(int)((k07 >> 32) & 0xFFL)] ^
T4[(int)((k06 >> 24) & 0xFFL)] ^ T5[(int)((k05 >> 16) & 0xFFL)] ^
T6[(int)((k04 >> 8) & 0xFFL)] ^ T7[(int)( k03 & 0xFFL)];
Kr3 = T0[(int)((k03 >> 56) & 0xFFL)] ^ T1[(int)((k02 >> 48) & 0xFFL)] ^
T2[(int)((k01 >> 40) & 0xFFL)] ^ T3[(int)((k00 >> 32) & 0xFFL)] ^
T4[(int)((k07 >> 24) & 0xFFL)] ^ T5[(int)((k06 >> 16) & 0xFFL)] ^
T6[(int)((k05 >> 8) & 0xFFL)] ^ T7[(int)( k04 & 0xFFL)];
Kr4 = T0[(int)((k04 >> 56) & 0xFFL)] ^ T1[(int)((k03 >> 48) & 0xFFL)] ^
T2[(int)((k02 >> 40) & 0xFFL)] ^ T3[(int)((k01 >> 32) & 0xFFL)] ^
T4[(int)((k00 >> 24) & 0xFFL)] ^ T5[(int)((k07 >> 16) & 0xFFL)] ^
T6[(int)((k06 >> 8) & 0xFFL)] ^ T7[(int)( k05 & 0xFFL)];
Kr5 = T0[(int)((k05 >> 56) & 0xFFL)] ^ T1[(int)((k04 >> 48) & 0xFFL)] ^
T2[(int)((k03 >> 40) & 0xFFL)] ^ T3[(int)((k02 >> 32) & 0xFFL)] ^
T4[(int)((k01 >> 24) & 0xFFL)] ^ T5[(int)((k00 >> 16) & 0xFFL)] ^
T6[(int)((k07 >> 8) & 0xFFL)] ^ T7[(int)( k06 & 0xFFL)];
Kr6 = T0[(int)((k06 >> 56) & 0xFFL)] ^ T1[(int)((k05 >> 48) & 0xFFL)] ^
T2[(int)((k04 >> 40) & 0xFFL)] ^ T3[(int)((k03 >> 32) & 0xFFL)] ^
T4[(int)((k02 >> 24) & 0xFFL)] ^ T5[(int)((k01 >> 16) & 0xFFL)] ^
T6[(int)((k00 >> 8) & 0xFFL)] ^ T7[(int)( k07 & 0xFFL)];
Kr7 = T0[(int)((k07 >> 56) & 0xFFL)] ^ T1[(int)((k06 >> 48) & 0xFFL)] ^
T2[(int)((k05 >> 40) & 0xFFL)] ^ T3[(int)((k04 >> 32) & 0xFFL)] ^
T4[(int)((k03 >> 24) & 0xFFL)] ^ T5[(int)((k02 >> 16) & 0xFFL)] ^
T6[(int)((k01 >> 8) & 0xFFL)] ^ T7[(int)( k00 & 0xFFL)];
k00 = Kr0;
k01 = Kr1;
k02 = Kr2;
k03 = Kr3;
k04 = Kr4;
k05 = Kr5;
k06 = Kr6;
k07 = Kr7;
// 2. incrementally compute the cipher output
w0 = T0[(int)((nn0 >> 56) & 0xFFL)] ^ T1[(int)((nn7 >> 48) & 0xFFL)] ^
T2[(int)((nn6 >> 40) & 0xFFL)] ^ T3[(int)((nn5 >> 32) & 0xFFL)] ^
T4[(int)((nn4 >> 24) & 0xFFL)] ^ T5[(int)((nn3 >> 16) & 0xFFL)] ^
T6[(int)((nn2 >> 8) & 0xFFL)] ^ T7[(int)( nn1 & 0xFFL)] ^
Kr0;
w1 = T0[(int)((nn1 >> 56) & 0xFFL)] ^ T1[(int)((nn0 >> 48) & 0xFFL)] ^
T2[(int)((nn7 >> 40) & 0xFFL)] ^ T3[(int)((nn6 >> 32) & 0xFFL)] ^
T4[(int)((nn5 >> 24) & 0xFFL)] ^ T5[(int)((nn4 >> 16) & 0xFFL)] ^
T6[(int)((nn3 >> 8) & 0xFFL)] ^ T7[(int)( nn2 & 0xFFL)] ^
Kr1;
w2 = T0[(int)((nn2 >> 56) & 0xFFL)] ^ T1[(int)((nn1 >> 48) & 0xFFL)] ^
T2[(int)((nn0 >> 40) & 0xFFL)] ^ T3[(int)((nn7 >> 32) & 0xFFL)] ^
T4[(int)((nn6 >> 24) & 0xFFL)] ^ T5[(int)((nn5 >> 16) & 0xFFL)] ^
T6[(int)((nn4 >> 8) & 0xFFL)] ^ T7[(int)( nn3 & 0xFFL)] ^
Kr2;
w3 = T0[(int)((nn3 >> 56) & 0xFFL)] ^ T1[(int)((nn2 >> 48) & 0xFFL)] ^
T2[(int)((nn1 >> 40) & 0xFFL)] ^ T3[(int)((nn0 >> 32) & 0xFFL)] ^
T4[(int)((nn7 >> 24) & 0xFFL)] ^ T5[(int)((nn6 >> 16) & 0xFFL)] ^
T6[(int)((nn5 >> 8) & 0xFFL)] ^ T7[(int)( nn4 & 0xFFL)] ^
Kr3;
w4 = T0[(int)((nn4 >> 56) & 0xFFL)] ^ T1[(int)((nn3 >> 48) & 0xFFL)] ^
T2[(int)((nn2 >> 40) & 0xFFL)] ^ T3[(int)((nn1 >> 32) & 0xFFL)] ^
T4[(int)((nn0 >> 24) & 0xFFL)] ^ T5[(int)((nn7 >> 16) & 0xFFL)] ^
T6[(int)((nn6 >> 8) & 0xFFL)] ^ T7[(int)( nn5 & 0xFFL)] ^
Kr4;
w5 = T0[(int)((nn5 >> 56) & 0xFFL)] ^ T1[(int)((nn4 >> 48) & 0xFFL)] ^
T2[(int)((nn3 >> 40) & 0xFFL)] ^ T3[(int)((nn2 >> 32) & 0xFFL)] ^
T4[(int)((nn1 >> 24) & 0xFFL)] ^ T5[(int)((nn0 >> 16) & 0xFFL)] ^
T6[(int)((nn7 >> 8) & 0xFFL)] ^ T7[(int)( nn6 & 0xFFL)] ^
Kr5;
w6 = T0[(int)((nn6 >> 56) & 0xFFL)] ^ T1[(int)((nn5 >> 48) & 0xFFL)] ^
T2[(int)((nn4 >> 40) & 0xFFL)] ^ T3[(int)((nn3 >> 32) & 0xFFL)] ^
T4[(int)((nn2 >> 24) & 0xFFL)] ^ T5[(int)((nn1 >> 16) & 0xFFL)] ^
T6[(int)((nn0 >> 8) & 0xFFL)] ^ T7[(int)( nn7 & 0xFFL)] ^
Kr6;
w7 = T0[(int)((nn7 >> 56) & 0xFFL)] ^ T1[(int)((nn6 >> 48) & 0xFFL)] ^
T2[(int)((nn5 >> 40) & 0xFFL)] ^ T3[(int)((nn4 >> 32) & 0xFFL)] ^
T4[(int)((nn3 >> 24) & 0xFFL)] ^ T5[(int)((nn2 >> 16) & 0xFFL)] ^
T6[(int)((nn1 >> 8) & 0xFFL)] ^ T7[(int)( nn0 & 0xFFL)] ^
Kr7;
nn0 = w0;
nn1 = w1;
nn2 = w2;
nn3 = w3;
nn4 = w4;
nn5 = w5;
nn6 = w6;
nn7 = w7;
}
// apply the Miyaguchi-Preneel hash scheme
H0 ^= w0 ^ n0;
H1 ^= w1 ^ n1;
H2 ^= w2 ^ n2;
H3 ^= w3 ^ n3;
H4 ^= w4 ^ n4;
H5 ^= w5 ^ n5;
H6 ^= w6 ^ n6;
H7 ^= w7 ^ n7;
}
protected byte[] padBuffer() {
// [WHIRLPOOL] p. 6:
// "...padded with a 1-bit, then with as few 0-bits as necessary to
// obtain a bit string whose length is an odd multiple of 256, and
// finally with the 256-bit right-justified binary representation of L."
// in this implementation we use 'count' as the number of bytes hashed
// so far. hence the minimal number of bytes added to the message proper
// are 33 (1 for the 1-bit followed by the 0-bits and the encoding of
// the count framed in a 256-bit block). our formula is then:
// count + 33 + padding = 0 (mod BLOCK_SIZE)
int n = (int)((count+33) % BLOCK_SIZE);
int padding = n == 0 ? 33 : BLOCK_SIZE - n + 33;
byte[] result = new byte[padding];
// padding is always binary 1 followed by binary 0s
result[0] = (byte) 0x80;
// save (right justified) the number of bits hashed
long bits = count * 8;
int i = padding - 8;
result[i++] = (byte)(bits >>> 56);
result[i++] = (byte)(bits >>> 48);
result[i++] = (byte)(bits >>> 40);
result[i++] = (byte)(bits >>> 32);
result[i++] = (byte)(bits >>> 24);
result[i++] = (byte)(bits >>> 16);
result[i++] = (byte)(bits >>> 8);
result[i ] = (byte) bits;
return result;
}
protected byte[] getResult() {
// apply inverse mu to the context
byte[] result = new byte[] {
(byte)(H0 >>> 56), (byte)(H0 >>> 48), (byte)(H0 >>> 40), (byte)(H0 >>> 32),
(byte)(H0 >>> 24), (byte)(H0 >>> 16), (byte)(H0 >>> 8), (byte) H0,
(byte)(H1 >>> 56), (byte)(H1 >>> 48), (byte)(H1 >>> 40), (byte)(H1 >>> 32),
(byte)(H1 >>> 24), (byte)(H1 >>> 16), (byte)(H1 >>> 8), (byte) H1,
(byte)(H2 >>> 56), (byte)(H2 >>> 48), (byte)(H2 >>> 40), (byte)(H2 >>> 32),
(byte)(H2 >>> 24), (byte)(H2 >>> 16), (byte)(H2 >>> 8), (byte) H2,
(byte)(H3 >>> 56), (byte)(H3 >>> 48), (byte)(H3 >>> 40), (byte)(H3 >>> 32),
(byte)(H3 >>> 24), (byte)(H3 >>> 16), (byte)(H3 >>> 8), (byte) H3,
(byte)(H4 >>> 56), (byte)(H4 >>> 48), (byte)(H4 >>> 40), (byte)(H4 >>> 32),
(byte)(H4 >>> 24), (byte)(H4 >>> 16), (byte)(H4 >>> 8), (byte) H4,
(byte)(H5 >>> 56), (byte)(H5 >>> 48), (byte)(H5 >>> 40), (byte)(H5 >>> 32),
(byte)(H5 >>> 24), (byte)(H5 >>> 16), (byte)(H5 >>> 8), (byte) H5,
(byte)(H6 >>> 56), (byte)(H6 >>> 48), (byte)(H6 >>> 40), (byte)(H6 >>> 32),
(byte)(H6 >>> 24), (byte)(H6 >>> 16), (byte)(H6 >>> 8), (byte) H6,
(byte)(H7 >>> 56), (byte)(H7 >>> 48), (byte)(H7 >>> 40), (byte)(H7 >>> 32),
(byte)(H7 >>> 24), (byte)(H7 >>> 16), (byte)(H7 >>> 8), (byte) H7
};
return result;
}
protected void resetContext() {
H0 = H1 = H2 = H3 = H4 = H5 = H6 = H7 = 0L;
}
public boolean selfTest() {
if (valid == null) {
valid = new Boolean(
DIGEST0.equals(Util.toString(new Whirlpool().digest())));
}
return valid.booleanValue();
}
}