All Downloads are FREE. Search and download functionalities are using the official Maven repository.

gnu.crypto.key.dh.RFC2631 Maven / Gradle / Ivy

The newest version!
package gnu.crypto.key.dh;

// ----------------------------------------------------------------------------
// $Id: RFC2631.java,v 1.1 2003/09/26 23:50:48 raif Exp $
//
// Copyright (C) 2003 Free Software Foundation, Inc.
//
// This file is part of GNU Crypto.
//
// GNU Crypto is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2, or (at your option)
// any later version.
//
// GNU Crypto is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; see the file COPYING.  If not, write to the
//
//    Free Software Foundation Inc.,
//    59 Temple Place - Suite 330,
//    Boston, MA 02111-1307
//    USA
//
// Linking this library statically or dynamically with other modules is
// making a combined work based on this library.  Thus, the terms and
// conditions of the GNU General Public License cover the whole
// combination.
//
// As a special exception, the copyright holders of this library give
// you permission to link this library with independent modules to
// produce an executable, regardless of the license terms of these
// independent modules, and to copy and distribute the resulting
// executable under terms of your choice, provided that you also meet,
// for each linked independent module, the terms and conditions of the
// license of that module.  An independent module is a module which is
// not derived from or based on this library.  If you modify this
// library, you may extend this exception to your version of the
// library, but you are not obligated to do so.  If you do not wish to
// do so, delete this exception statement from your version.
// ----------------------------------------------------------------------------

import gnu.crypto.hash.Sha160;
import gnu.crypto.util.Prime;
import gnu.crypto.util.PRNG;

import java.math.BigInteger;
import java.security.SecureRandom;

/**
 * 

An implementation of the Diffie-Hellman parameter generation as defined in * RFC-2631.

* *

Reference:

*
    *
  1. Diffie-Hellman Key * Agreement Method
    * Eric Rescorla.
  2. *
* * @version $Revision: 1.1 $ */ public class RFC2631 { // Constants and variables // ------------------------------------------------------------------------- public static final int DH_PARAMS_SEED = 0; public static final int DH_PARAMS_COUNTER = 1; public static final int DH_PARAMS_Q = 2; public static final int DH_PARAMS_P = 3; public static final int DH_PARAMS_J = 4; public static final int DH_PARAMS_G = 5; private static final BigInteger TWO = BigInteger.valueOf(2L); /** The SHA instance to use. */ private Sha160 sha = new Sha160(); /** Length of private modulus and of q. */ private int m; /** Length of public modulus p. */ private int L; /** The optional {@link SecureRandom} instance to use. */ private SecureRandom rnd = null; // Constructor(s) // ------------------------------------------------------------------------- public RFC2631(int m, int L, SecureRandom rnd) { super(); this.m = m; this.L = L; this.rnd = rnd; } // Class methods // ------------------------------------------------------------------------- // Instance methods // ------------------------------------------------------------------------- public BigInteger[] generateParameters() { int i, j, counter; byte[] u1, u2, v; byte[] seedBytes = new byte[m / 8]; BigInteger SEED, U, q, R, V, W, X, p, g; // start by genrating p and q, where q is of length m and p is of length L // 1. Set m' = m/160 where / represents integer division with rounding // upwards. I.e. 200/160 = 2. int m_ = (m + 159) / 160; // 2. Set L'= L/160 int L_ = (L + 159) / 160; // 3. Set N'= L/1024 int N_ = (L + 1023) / 1024; algorithm: while (true) { step4: while (true) { // 4. Select an arbitrary bit string SEED such that length of SEED >= m nextRandomBytes(seedBytes); SEED = new BigInteger(1, seedBytes).setBit(m-1).setBit(0); // 5. Set U = 0 U = BigInteger.ZERO; // 6. For i = 0 to m' - 1 // U = U + (SHA1[SEED + i] XOR SHA1[(SEED + m' + i)) * 2^(160 * i) // Note that for m=160, this reduces to the algorithm of [FIPS-186] // U = SHA1[SEED] XOR SHA1[(SEED+1) mod 2^160 ]. for (i = 0; i < m_; i++) { u1 = SEED.add(BigInteger.valueOf(i)).toByteArray(); u2 = SEED.add(BigInteger.valueOf(m_ + i)).toByteArray(); sha.update(u1, 0, u1.length); u1 = sha.digest(); sha.update(u2, 0, u2.length); u2 = sha.digest(); for (j = 0; j < u1.length; j++) { u1[j] ^= u2[j]; } U = U.add(new BigInteger(1, u1).multiply(TWO.pow(160 * i))); } // 5. Form q from U by computing U mod (2^m) and setting the most // significant bit (the 2^(m-1) bit) and the least significant bit to // 1. In terms of boolean operations, q = U OR 2^(m-1) OR 1. Note // that 2^(m-1) < q < 2^m q = U.setBit(m-1).setBit(0); // 6. Use a robust primality algorithm to test whether q is prime. // 7. If q is not prime then go to 4. if (Prime.isProbablePrime(q)) { break step4; } } // 8. Let counter = 0 counter = 0; step9: while (true) { // 9. Set R = seed + 2*m' + (L' * counter) R = SEED.add(BigInteger.valueOf(2 * m_)).add(BigInteger.valueOf(L_ * counter)); // 10. Set V = 0 V = BigInteger.ZERO; // 12. For i = 0 to L'-1 do: V = V + SHA1(R + i) * 2^(160 * i) for (i = 0; i < L_; i++) { v = R.toByteArray(); sha.update(v, 0, v.length); v = sha.digest(); V = V.add(new BigInteger(1, v).multiply(TWO.pow(160 * i))); } // 13. Set W = V mod 2^L W = V.mod(TWO.pow(L)); // 14. Set X = W OR 2^(L-1) // Note that 0 <= W < 2^(L-1) and hence X >= 2^(L-1) X = W.setBit(L-1); // 15. Set p = X - (X mod (2*q)) + 1 p = X.add(BigInteger.ONE).subtract(X.mod(TWO.multiply(q))); // 16. If p > 2^(L-1) use a robust primality test to test whether p is // prime. Else go to 18. //17. If p is prime output p, q, seed, counter and stop. if (Prime.isProbablePrime(p)) { break algorithm; } // 18. Set counter = counter + 1 counter++; // 19. If counter < (4096 * N) then go to 8. // 20. Output "failure" if (counter >= 4096 * N_) { continue algorithm; } } } // compute g. from FIPS-186, Appendix 4: // 1. Generate p and q as specified in Appendix 2. // 2. Let e = (p - 1) / q BigInteger e = p.subtract(BigInteger.ONE).divide(q); BigInteger h = TWO; BigInteger p_minus_1 = p.subtract(BigInteger.ONE); g = TWO; // 3. Set h = any integer, where 1 < h < p - 1 and h differs from any // value previously tried for ( ; h.compareTo(p_minus_1) < 0; h = h.add(BigInteger.ONE)) { // 4. Set g = h**e mod p g = h.modPow(e, p); // 5. If g = 1, go to step 3 if (!g.equals(BigInteger.ONE)) { break; } } return new BigInteger[] { SEED, BigInteger.valueOf(counter), q, p, e, g }; } // helper methods ---------------------------------------------------------- /** *

Fills the designated byte array with random data.

* * @param buffer the byte array to fill with random data. */ private void nextRandomBytes(byte[] buffer) { if (rnd != null) { rnd.nextBytes(buffer); } else { PRNG.nextBytes(buffer); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy