All Downloads are FREE. Search and download functionalities are using the official Maven repository.

gnu.crypto.key.dss.FIPS186 Maven / Gradle / Ivy

The newest version!
package gnu.crypto.key.dss;

// ----------------------------------------------------------------------------
// $Id: FIPS186.java,v 1.1 2003/09/26 23:50:48 raif Exp $
//
// Copyright (C) 2003 Free Software Foundation, Inc.
//
// This file is part of GNU Crypto.
//
// GNU Crypto is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2, or (at your option)
// any later version.
//
// GNU Crypto is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; see the file COPYING.  If not, write to the
//
//    Free Software Foundation Inc.,
//    59 Temple Place - Suite 330,
//    Boston, MA 02111-1307
//    USA
//
// Linking this library statically or dynamically with other modules is
// making a combined work based on this library.  Thus, the terms and
// conditions of the GNU General Public License cover the whole
// combination.
//
// As a special exception, the copyright holders of this library give
// you permission to link this library with independent modules to
// produce an executable, regardless of the license terms of these
// independent modules, and to copy and distribute the resulting
// executable under terms of your choice, provided that you also meet,
// for each linked independent module, the terms and conditions of the
// license of that module.  An independent module is a module which is
// not derived from or based on this library.  If you modify this
// library, you may extend this exception to your version of the
// library, but you are not obligated to do so.  If you do not wish to
// do so, delete this exception statement from your version.
// ----------------------------------------------------------------------------

import gnu.crypto.hash.Sha160;
import gnu.crypto.util.Prime;
import gnu.crypto.util.PRNG;

import java.math.BigInteger;
import java.security.SecureRandom;

/**
 * 

An implementation of the DSA parameters generation as described in * FIPS-186.

* * References:
* Digital Signature * Standard (DSS), Federal Information Processing Standards Publication 186. * National Institute of Standards and Technology. * * @version $Revision: 1.1 $ */ public class FIPS186 { // Constants and variables // ------------------------------------------------------------------------- public static final int DSA_PARAMS_SEED = 0; public static final int DSA_PARAMS_COUNTER = 1; public static final int DSA_PARAMS_Q = 2; public static final int DSA_PARAMS_P = 3; public static final int DSA_PARAMS_E = 4; public static final int DSA_PARAMS_G = 5; /** The BigInteger constant 2. */ private static final BigInteger TWO = new BigInteger("2"); private static final BigInteger TWO_POW_160 = TWO.pow(160); /** The SHA instance to use. */ private Sha160 sha = new Sha160(); /** The length of the modulus of DSS keys generated by this instance. */ private int L; /** The optional {@link SecureRandom} instance to use. */ private SecureRandom rnd = null; // Constructor(s) // ------------------------------------------------------------------------- public FIPS186(int L, SecureRandom rnd) { super(); this.L = L; this.rnd = rnd; } // Class methods // ------------------------------------------------------------------------- // Instance methods // ------------------------------------------------------------------------- /** * This method generates the DSS p, q, and * g parameters only when L (the modulus length) * is not one of the following: 512, 768 and * 1024. For those values of L, this implementation * uses pre-computed values of p, q, and * g given in the document CryptoSpec included in the * security guide documentation of the standard JDK distribution.

* * The DSS requires two primes , p and q, * satisfying the following three conditions: * *

    *
  • 2159 < q < 2160
  • *
  • 2L-1 < p < 2L for a * specified L, where L = 512 + 64j for some * 0 <= j <= 8
  • *
  • q divides p - 1.
  • *
* * The algorithm used to find these primes is as described in FIPS-186, * section 2.2: GENERATION OF PRIMES. This prime generation scheme starts by * using the {@link gnu.crypto.hash.Sha160} and a user supplied SEED * to construct a prime, q, in the range 2159 < q * < 2160. Once this is accomplished, the same SEED * value is used to construct an X in the range 2L-1 * < X < 2L. The prime, p, is then * formed by rounding X to a number congruent to 1 mod * 2q. In this implementation we use the same SEED value given * in FIPS-186, Appendix 5. */ public BigInteger[] generateParameters() { int counter, offset; BigInteger SEED, alpha, U, q, OFFSET, SEED_PLUS_OFFSET, W, X, p, c, g; byte[] a, u; byte[] kb = new byte[20]; // to hold 160 bits of randomness // Let L-1 = n*160 + b, where b and n are integers and 0 <= b < 160. int b = (L-1) % 160; int n = (L-1-b) / 160; BigInteger[] V = new BigInteger[n+1]; algorithm: while (true) { step1: while (true) { // 1. Choose an arbitrary sequence of at least 160 bits and // call it SEED. nextRandomBytes(kb); SEED = new BigInteger(1, kb).setBit(159).setBit(0); // Let g be the length of SEED in bits. here always 160 // 2. Compute: U = SHA[SEED] XOR SHA[(SEED+1) mod 2**g] alpha = SEED.add(BigInteger.ONE).mod(TWO_POW_160); synchronized (sha) { a = SEED.toByteArray(); sha.update(a, 0, a.length); a = sha.digest(); u = alpha.toByteArray(); sha.update(u, 0, u.length); u = sha.digest(); } for (int i = 0; i < a.length; i++) { a[i] ^= u[i]; } U = new BigInteger(1, a); // 3. Form q from U by setting the most significant bit (the // 2**159 bit) and the least significant bit to 1. In terms of // boolean operations, q = U OR 2**159 OR 1. Note that // 2**159 < q < 2**160. q = U.setBit(159).setBit(0); // 4. Use a robust primality testing algorithm to test whether // q is prime(1). A robust primality test is one where the // probability of a non-prime number passing the test is at // most 1/2**80. // 5. If q is not prime, go to step 1. if (Prime.isProbablePrime(q)) { break step1; } } // step1 // 6. Let counter = 0 and offset = 2. counter = 0; offset = 2; step7: while (true) { OFFSET = BigInteger.valueOf(offset & 0xFFFFFFFFL); SEED_PLUS_OFFSET = SEED.add(OFFSET); // 7. For k = 0,...,n let V[k] = SHA[(SEED + offset + k) mod 2**g]. synchronized (sha) { for (int k = 0; k <= n; k++) { a = SEED_PLUS_OFFSET .add(BigInteger.valueOf(k & 0xFFFFFFFFL)) .mod(TWO_POW_160) .toByteArray(); sha.update(a, 0, a.length); V[k] = new BigInteger(1, sha.digest()); } } // 8. Let W be the integer: // V[0]+V[1]*2**160+...+V[n-1]*2**((n-1)*160)+(V[n]mod2**b)*2**(n*160) // and let : X = W + 2**(L-1). // Note that 0 <= W < 2**(L-1) and hence 2**(L-1) <= X < 2**L. W = V[0]; for (int k = 1; k < n; k++) { W = W.add(V[k].multiply(TWO.pow(k*160))); } W = W.add(V[n].mod(TWO.pow(b)).multiply(TWO.pow(n*160))); X = W.add(TWO.pow(L-1)); // 9. Let c = X mod 2q and set p = X - (c - 1). // Note that p is congruent to 1 mod 2q. c = X.mod(TWO.multiply(q)); p = X.subtract(c.subtract(BigInteger.ONE)); // 10. If p < 2**(L-1), then go to step 13. if (p.compareTo(TWO.pow(L-1)) >= 0) { // 11. Perform a robust primality test on p. // 12. If p passes the test performed in step 11, go to step 15. if (Prime.isProbablePrime(p)) { break algorithm; } } // 13. Let counter = counter + 1 and offset = offset + n + 1. counter++; offset += n + 1; // 14. If counter >= 4096 go to step 1, otherwise go to step 7. if (counter >= 4096) { continue algorithm; } } // step7 } // algorithm // compute g. from FIPS-186, Appendix 4: // 1. Generate p and q as specified in Appendix 2. // 2. Let e = (p - 1) / q BigInteger e = p.subtract(BigInteger.ONE).divide(q); BigInteger h = TWO; BigInteger p_minus_1 = p.subtract(BigInteger.ONE); g = TWO; // 3. Set h = any integer, where 1 < h < p - 1 and // h differs from any value previously tried for ( ; h.compareTo(p_minus_1) < 0; h = h.add(BigInteger.ONE)) { // 4. Set g = h**e mod p g = h.modPow(e, p); // 5. If g = 1, go to step 3 if (!g.equals(BigInteger.ONE)) { break; } } return new BigInteger[] { SEED, BigInteger.valueOf(counter), q, p, e, g }; } // helper methods ---------------------------------------------------------- /** * Fills the designated byte array with random data. * * @param buffer the byte array to fill with random data. */ private void nextRandomBytes(byte[] buffer) { if (rnd != null) { rnd.nextBytes(buffer); } else { PRNG.nextBytes(buffer); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy