All Downloads are FREE. Search and download functionalities are using the official Maven repository.

gnu.crypto.key.rsa.GnuRSAPrivateKey Maven / Gradle / Ivy

The newest version!
package gnu.crypto.key.rsa;

// ----------------------------------------------------------------------------
// $Id: GnuRSAPrivateKey.java,v 1.2 2003/11/09 11:57:59 raif Exp $
//
// Copyright (C) 2001, 2002, 2003 Free Software Foundation, Inc.
//
// This file is part of GNU Crypto.
//
// GNU Crypto is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2, or (at your option)
// any later version.
//
// GNU Crypto is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; see the file COPYING.  If not, write to the
//
//    Free Software Foundation Inc.,
//    59 Temple Place - Suite 330,
//    Boston, MA 02111-1307
//    USA
//
// Linking this library statically or dynamically with other modules is
// making a combined work based on this library.  Thus, the terms and
// conditions of the GNU General Public License cover the whole
// combination.
//
// As a special exception, the copyright holders of this library give
// you permission to link this library with independent modules to
// produce an executable, regardless of the license terms of these
// independent modules, and to copy and distribute the resulting
// executable under terms of your choice, provided that you also meet,
// for each linked independent module, the terms and conditions of the
// license of that module.  An independent module is a module which is
// not derived from or based on this library.  If you modify this
// library, you may extend this exception to your version of the
// library, but you are not obligated to do so.  If you do not wish to
// do so, delete this exception statement from your version.
// ----------------------------------------------------------------------------

import gnu.crypto.Registry;
import gnu.crypto.key.IKeyPairCodec;

import java.math.BigInteger;
import java.security.PrivateKey;
import java.security.interfaces.RSAPrivateCrtKey;
import java.security.interfaces.RSAPrivateKey;

/**
 * 

An object that embodies an RSA private key.

* *

References:

*
    *
  1. * RSA-PSS Signature Scheme with Appendix, part B.
    * Primitive specification and supporting documentation.
    * Jakob Jonsson and Burt Kaliski.
  2. *
* * @version $Revision: 1.2 $ */ public class GnuRSAPrivateKey extends GnuRSAKey implements PrivateKey, RSAPrivateCrtKey { // Constants and variables // ------------------------------------------------------------------------- /** The first prime divisor of the modulus. */ private final BigInteger p; /** The second prime divisor of the modulus. */ private final BigInteger q; /** The public exponent of an RSA key. */ // private final BigInteger e; /** The private exponent of an RSA private key. */ private final BigInteger d; /** The first factor's exponent. */ private final BigInteger dP; /** The second factor's exponent. */ private final BigInteger dQ; /** The CRT (Chinese Remainder Theorem) coefficient. */ private final BigInteger qInv; // Constructor(s) // ------------------------------------------------------------------------- /** *

Trivial constructor.

* * @param p the modulus first prime divisor. * @param q the modulus second prime divisor. * @param e the public exponent. * @param d the private exponent. */ public GnuRSAPrivateKey(final BigInteger p, final BigInteger q, final BigInteger e, final BigInteger d) { // super(p.multiply(q)); super(p.multiply(q), e); this.p = p; this.q = q; // this.e = e; this.d = d; // the exponents dP and dQ are positive integers less than p and q // respectively satisfying // e * dP = 1 (mod p-1); // e * dQ = 1 (mod q-1), dP = e.modInverse(p.subtract(BigInteger.ONE)); dQ = e.modInverse(q.subtract(BigInteger.ONE)); // and the CRT coefficient qInv is a positive integer less than p // satisfying // q * qInv = 1 (mod p). qInv = q.modInverse(p); } // Class methods // ------------------------------------------------------------------------- /** *

A class method that takes the output of the encodePrivateKey() * method of an RSA keypair codec object (an instance implementing * {@link gnu.crypto.key.IKeyPairCodec} for RSA keys, and re-constructs an * instance of this object.

* * @param k the contents of a previously encoded instance of this object. * @throws ArrayIndexOutOfBoundsException if there is not enough bytes, in * k, to represent a valid encoding of an instance of this object. * @throws IllegalArgumentException if the byte sequence does not represent a * valid encoding of an instance of this object. */ public static GnuRSAPrivateKey valueOf(final byte[] k) { // check magic... // we should parse here enough bytes to know which codec to use, and // direct the byte array to the appropriate codec. since we only have one // codec, we could have immediately tried it; nevertheless since testing // one byte is cheaper than instatiating a codec that will fail we test // the first byte before we carry on. if (k[0] == Registry.MAGIC_RAW_RSA_PRIVATE_KEY[0]) { // it's likely to be in raw format. get a raw codec and hand it over final IKeyPairCodec codec = new RSAKeyPairRawCodec(); return (GnuRSAPrivateKey) codec.decodePrivateKey(k); } else { throw new IllegalArgumentException("magic"); } } // Instance methods // ------------------------------------------------------------------------- // java.security.interfaces.RSAPrivateCrtKey interface implementation ------ // public BigInteger getPublicExponent() { // return e; // } public BigInteger getPrimeP() { return p; } public BigInteger getPrimeQ() { return q; } public BigInteger getPrimeExponentP() { return dP; } public BigInteger getPrimeExponentQ() { return dQ; } public BigInteger getCrtCoefficient() { return qInv; } // java.security.interfaces.RSAPrivateKey interface implementation --------- public BigInteger getPrivateExponent() { return d; } // Other instance methods -------------------------------------------------- /** *

Returns the encoded form of this private key according to the * designated format.

* * @param format the desired format identifier of the resulting encoding. * @return the byte sequence encoding this key according to the designated * format. * @throws IllegalArgumentException if the format is not supported. * @see gnu.crypto.key.rsa.RSAKeyPairRawCodec */ public byte[] getEncoded(final int format) { final byte[] result; switch (format) { case IKeyPairCodec.RAW_FORMAT: result = new RSAKeyPairRawCodec().encodePrivateKey(this); break; default: throw new IllegalArgumentException("format"); } return result; } /** *

Returns true if the designated object is an instance of * this class and has the same RSA parameter values as this one.

* * @param obj the other non-null RSA key to compare to. * @return true if the designated object is of the same type * and value as this one. */ public boolean equals(final Object obj) { if (obj == null) { return false; } if (obj instanceof RSAPrivateKey) { final RSAPrivateKey that = (RSAPrivateKey) obj; return super.equals(that) && d.equals(that.getPrivateExponent()); } if (obj instanceof RSAPrivateCrtKey) { final RSAPrivateCrtKey that = (RSAPrivateCrtKey) obj; return super.equals(that) && p.equals(that.getPrimeP()) && q.equals(that.getPrimeQ()) && dP.equals(that.getPrimeExponentP()) && dQ.equals(that.getPrimeExponentQ()) && qInv.equals(that.getCrtCoefficient()); } return false; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy