All Downloads are FREE. Search and download functionalities are using the official Maven repository.

gnu.crypto.key.rsa.RSAKeyPairGenerator Maven / Gradle / Ivy

The newest version!
package gnu.crypto.key.rsa;

// ----------------------------------------------------------------------------
// $Id: RSAKeyPairGenerator.java,v 1.1 2003/09/26 23:50:48 raif Exp $
//
// Copyright (C) 2001, 2002, 2003 Free Software Foundation, Inc.
//
// This file is part of GNU Crypto.
//
// GNU Crypto is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2, or (at your option)
// any later version.
//
// GNU Crypto is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; see the file COPYING.  If not, write to the
//
//    Free Software Foundation Inc.,
//    59 Temple Place - Suite 330,
//    Boston, MA 02111-1307
//    USA
//
// Linking this library statically or dynamically with other modules is
// making a combined work based on this library.  Thus, the terms and
// conditions of the GNU General Public License cover the whole
// combination.
//
// As a special exception, the copyright holders of this library give
// you permission to link this library with independent modules to
// produce an executable, regardless of the license terms of these
// independent modules, and to copy and distribute the resulting
// executable under terms of your choice, provided that you also meet,
// for each linked independent module, the terms and conditions of the
// license of that module.  An independent module is a module which is
// not derived from or based on this library.  If you modify this
// library, you may extend this exception to your version of the
// library, but you are not obligated to do so.  If you do not wish to
// do so, delete this exception statement from your version.
// ----------------------------------------------------------------------------

import gnu.crypto.Registry;
import gnu.crypto.key.IKeyPairGenerator;
import gnu.crypto.util.Prime;
import gnu.crypto.util.PRNG;

import java.math.BigInteger;
import java.security.KeyPair;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.SecureRandom;
import java.security.spec.RSAKeyGenParameterSpec;
import java.util.Map;

/**
 * 

A key-pair generator for asymetric keys to use in conjunction with the RSA * scheme.

* *

Reference:

*
    *
  1. * RSA-PSS Signature Scheme with Appendix, part B. Primitive * specification and supporting documentation. Jakob Jonsson and Burt Kaliski. *
  2. *
  3. Handbook of Applied * Cryptography, Alfred J. Menezes, Paul C. van Oorschot and Scott A. * Vanstone. Section 11.3 RSA and related signature schemes.
  4. *
* * @version $Revision: 1.1 $ */ public class RSAKeyPairGenerator implements IKeyPairGenerator { // Constants and variables // ------------------------------------------------------------------------- /** The BigInteger constant 1. */ private static final BigInteger ONE = BigInteger.ONE; /** The BigInteger constant 2. */ private static final BigInteger TWO = BigInteger.valueOf(2L); /** Property name of the length (Integer) of the modulus of an RSA key. */ public static final String MODULUS_LENGTH = "gnu.crypto.rsa.L"; /** * Property name of an optional {@link SecureRandom} instance to use. The * default is to use a classloader singleton from {@link PRNG}. */ public static final String SOURCE_OF_RANDOMNESS = "gnu.crypto.rsa.prng"; /** * Property name of an optional {@link RSAKeyGenParameterSpec} instance to * use for this generator's n, and e values. The * default is to generate n and use a fixed value for * e (Fermat's F4 number). */ public static final String RSA_PARAMETERS = "gnu.crypto.rsa.params"; /** Default value for the modulus length. */ private static final int DEFAULT_MODULUS_LENGTH = 1024; /** The desired bit length of the modulus. */ private int L; /** * This implementation uses, by default, Fermat's F4 number as the public * exponent. */ private BigInteger e = BigInteger.valueOf(65537L); /** The optional {@link SecureRandom} instance to use. */ private SecureRandom rnd = null; // Constructor(s) // ------------------------------------------------------------------------- // implicit 0-arguments constructor // Class methods // ------------------------------------------------------------------------- // gnu.crypto.key.IKeyPairGenerator interface implementation --------------- public String name() { return Registry.RSA_KPG; } /** *

Configures this instance.

* * @param attributes the map of name/value pairs to use. * @exception IllegalArgumentException if the designated MODULUS_LENGTH * value is less than 1024. */ public void setup(Map attributes) { // do we have a SecureRandom, or should we use our own? rnd = (SecureRandom) attributes.get(SOURCE_OF_RANDOMNESS); // are we given a set of RSA params or we shall use our own? RSAKeyGenParameterSpec params = (RSAKeyGenParameterSpec) attributes.get(RSA_PARAMETERS); // find out the modulus length if (params != null) { L = params.getKeysize(); e = params.getPublicExponent(); } else { Integer l = (Integer) attributes.get(MODULUS_LENGTH); L = (l == null ? DEFAULT_MODULUS_LENGTH : l.intValue()); } if (L < 1024) { throw new IllegalArgumentException(MODULUS_LENGTH); } } /** *

The algorithm used here is described in nessie-pss-B.pdf * document which is part of the RSA-PSS submission to NESSIE.

* * @return an RSA keypair. */ public KeyPair generate() { BigInteger p, q, n, d; // 1. Generate a prime p in the interval [2**(M-1), 2**M - 1], where // M = CEILING(L/2), and such that GCD(p, e) = 1 int M = (L+1)/2; BigInteger lower = TWO.pow(M-1); BigInteger upper = TWO.pow(M).subtract(ONE); byte[] kb = new byte[(M+7)/8]; // enough bytes to frame M bits step1: while (true) { nextRandomBytes(kb); p = new BigInteger(1, kb).setBit(0); if ( p.compareTo(lower) >= 0 && p.compareTo(upper) <= 0 && Prime.isProbablePrime(p) && p.gcd(e).equals(ONE)) { break step1; } } // 2. Generate a prime q such that the product of p and q is an L-bit // number, and such that GCD(q, e) = 1 step2: while (true) { nextRandomBytes(kb); q = new BigInteger(1, kb).setBit(0); n = p.multiply(q); if ( n.bitLength() == L && Prime.isProbablePrime(q) && q.gcd(e).equals(ONE)) { break step2; } // TODO: test for p != q } // TODO: ensure p < q // 3. Put n = pq. The public key is (n, e). // 4. Compute the parameters necessary for the private key K (see // Section 2.2). BigInteger phi = p.subtract(ONE).multiply(q.subtract(ONE)); d = e.modInverse(phi); // 5. Output the public key and the private key. PublicKey pubK = new GnuRSAPublicKey(n, e); PrivateKey secK = new GnuRSAPrivateKey(p, q, e, d); return new KeyPair(pubK, secK); } // helper methods ---------------------------------------------------------- /** *

Fills the designated byte array with random data.

* * @param buffer the byte array to fill with random data. */ private void nextRandomBytes(byte[] buffer) { if (rnd != null) { rnd.nextBytes(buffer); } else { PRNG.nextBytes(buffer); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy