![JAR search and dependency download from the Maven repository](/logo.png)
gnu.crypto.key.rsa.RSAKeyPairGenerator Maven / Gradle / Ivy
The newest version!
package gnu.crypto.key.rsa;
// ----------------------------------------------------------------------------
// $Id: RSAKeyPairGenerator.java,v 1.1 2003/09/26 23:50:48 raif Exp $
//
// Copyright (C) 2001, 2002, 2003 Free Software Foundation, Inc.
//
// This file is part of GNU Crypto.
//
// GNU Crypto is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2, or (at your option)
// any later version.
//
// GNU Crypto is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; see the file COPYING. If not, write to the
//
// Free Software Foundation Inc.,
// 59 Temple Place - Suite 330,
// Boston, MA 02111-1307
// USA
//
// Linking this library statically or dynamically with other modules is
// making a combined work based on this library. Thus, the terms and
// conditions of the GNU General Public License cover the whole
// combination.
//
// As a special exception, the copyright holders of this library give
// you permission to link this library with independent modules to
// produce an executable, regardless of the license terms of these
// independent modules, and to copy and distribute the resulting
// executable under terms of your choice, provided that you also meet,
// for each linked independent module, the terms and conditions of the
// license of that module. An independent module is a module which is
// not derived from or based on this library. If you modify this
// library, you may extend this exception to your version of the
// library, but you are not obligated to do so. If you do not wish to
// do so, delete this exception statement from your version.
// ----------------------------------------------------------------------------
import gnu.crypto.Registry;
import gnu.crypto.key.IKeyPairGenerator;
import gnu.crypto.util.Prime;
import gnu.crypto.util.PRNG;
import java.math.BigInteger;
import java.security.KeyPair;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.SecureRandom;
import java.security.spec.RSAKeyGenParameterSpec;
import java.util.Map;
/**
* A key-pair generator for asymetric keys to use in conjunction with the RSA
* scheme.
*
* Reference:
*
* -
* RSA-PSS Signature Scheme with Appendix, part B. Primitive
* specification and supporting documentation. Jakob Jonsson and Burt Kaliski.
*
* - Handbook of Applied
* Cryptography, Alfred J. Menezes, Paul C. van Oorschot and Scott A.
* Vanstone. Section 11.3 RSA and related signature schemes.
*
*
* @version $Revision: 1.1 $
*/
public class RSAKeyPairGenerator implements IKeyPairGenerator {
// Constants and variables
// -------------------------------------------------------------------------
/** The BigInteger constant 1. */
private static final BigInteger ONE = BigInteger.ONE;
/** The BigInteger constant 2. */
private static final BigInteger TWO = BigInteger.valueOf(2L);
/** Property name of the length (Integer) of the modulus of an RSA key. */
public static final String MODULUS_LENGTH = "gnu.crypto.rsa.L";
/**
* Property name of an optional {@link SecureRandom} instance to use. The
* default is to use a classloader singleton from {@link PRNG}.
*/
public static final String SOURCE_OF_RANDOMNESS = "gnu.crypto.rsa.prng";
/**
* Property name of an optional {@link RSAKeyGenParameterSpec} instance to
* use for this generator's n
, and e
values. The
* default is to generate n
and use a fixed value for
* e (Fermat's F4 number).
*/
public static final String RSA_PARAMETERS = "gnu.crypto.rsa.params";
/** Default value for the modulus length. */
private static final int DEFAULT_MODULUS_LENGTH = 1024;
/** The desired bit length of the modulus. */
private int L;
/**
* This implementation uses, by default, Fermat's F4 number as the public
* exponent.
*/
private BigInteger e = BigInteger.valueOf(65537L);
/** The optional {@link SecureRandom} instance to use. */
private SecureRandom rnd = null;
// Constructor(s)
// -------------------------------------------------------------------------
// implicit 0-arguments constructor
// Class methods
// -------------------------------------------------------------------------
// gnu.crypto.key.IKeyPairGenerator interface implementation ---------------
public String name() {
return Registry.RSA_KPG;
}
/**
* Configures this instance.
*
* @param attributes the map of name/value pairs to use.
* @exception IllegalArgumentException if the designated MODULUS_LENGTH
* value is less than 1024.
*/
public void setup(Map attributes) {
// do we have a SecureRandom, or should we use our own?
rnd = (SecureRandom) attributes.get(SOURCE_OF_RANDOMNESS);
// are we given a set of RSA params or we shall use our own?
RSAKeyGenParameterSpec params =
(RSAKeyGenParameterSpec) attributes.get(RSA_PARAMETERS);
// find out the modulus length
if (params != null) {
L = params.getKeysize();
e = params.getPublicExponent();
} else {
Integer l = (Integer) attributes.get(MODULUS_LENGTH);
L = (l == null ? DEFAULT_MODULUS_LENGTH : l.intValue());
}
if (L < 1024) {
throw new IllegalArgumentException(MODULUS_LENGTH);
}
}
/**
* The algorithm used here is described in nessie-pss-B.pdf
* document which is part of the RSA-PSS submission to NESSIE.
*
* @return an RSA keypair.
*/
public KeyPair generate() {
BigInteger p, q, n, d;
// 1. Generate a prime p in the interval [2**(M-1), 2**M - 1], where
// M = CEILING(L/2), and such that GCD(p, e) = 1
int M = (L+1)/2;
BigInteger lower = TWO.pow(M-1);
BigInteger upper = TWO.pow(M).subtract(ONE);
byte[] kb = new byte[(M+7)/8]; // enough bytes to frame M bits
step1: while (true) {
nextRandomBytes(kb);
p = new BigInteger(1, kb).setBit(0);
if ( p.compareTo(lower) >= 0
&& p.compareTo(upper) <= 0
&& Prime.isProbablePrime(p)
&& p.gcd(e).equals(ONE)) {
break step1;
}
}
// 2. Generate a prime q such that the product of p and q is an L-bit
// number, and such that GCD(q, e) = 1
step2: while (true) {
nextRandomBytes(kb);
q = new BigInteger(1, kb).setBit(0);
n = p.multiply(q);
if ( n.bitLength() == L
&& Prime.isProbablePrime(q)
&& q.gcd(e).equals(ONE)) {
break step2;
}
// TODO: test for p != q
}
// TODO: ensure p < q
// 3. Put n = pq. The public key is (n, e).
// 4. Compute the parameters necessary for the private key K (see
// Section 2.2).
BigInteger phi = p.subtract(ONE).multiply(q.subtract(ONE));
d = e.modInverse(phi);
// 5. Output the public key and the private key.
PublicKey pubK = new GnuRSAPublicKey(n, e);
PrivateKey secK = new GnuRSAPrivateKey(p, q, e, d);
return new KeyPair(pubK, secK);
}
// helper methods ----------------------------------------------------------
/**
* Fills the designated byte array with random data.
*
* @param buffer the byte array to fill with random data.
*/
private void nextRandomBytes(byte[] buffer) {
if (rnd != null) {
rnd.nextBytes(buffer);
} else {
PRNG.nextBytes(buffer);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy