All Downloads are FREE. Search and download functionalities are using the official Maven repository.

gnu.crypto.mac.UMac32 Maven / Gradle / Ivy

The newest version!
package gnu.crypto.mac;

// ----------------------------------------------------------------------------
// $Id: UMac32.java,v 1.6 2003/04/28 10:54:38 raif Exp $
//
// Copyright (C) 2001, 2002, 2003 Free Software Foundation, Inc.
//
// This file is part of GNU Crypto.
//
// GNU Crypto is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2, or (at your option)
// any later version.
//
// GNU Crypto is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; see the file COPYING.  If not, write to the
//
//    Free Software Foundation Inc.,
//    59 Temple Place - Suite 330,
//    Boston, MA 02111-1307
//    USA
//
// Linking this library statically or dynamically with other modules is
// making a combined work based on this library.  Thus, the terms and
// conditions of the GNU General Public License cover the whole
// combination.
//
// As a special exception, the copyright holders of this library give
// you permission to link this library with independent modules to
// produce an executable, regardless of the license terms of these
// independent modules, and to copy and distribute the resulting
// executable under terms of your choice, provided that you also meet,
// for each linked independent module, the terms and conditions of the
// license of that module.  An independent module is a module which is
// not derived from or based on this library.  If you modify this
// library, you may extend this exception to your version of the
// library, but you are not obligated to do so.  If you do not wish to
// do so, delete this exception statement from your version.
// ----------------------------------------------------------------------------

import gnu.crypto.Registry;
import gnu.crypto.cipher.CipherFactory;
import gnu.crypto.cipher.IBlockCipher;
import gnu.crypto.prng.IRandom;
import gnu.crypto.prng.LimitReachedException;
import gnu.crypto.prng.UMacGenerator;
import gnu.crypto.util.Util;

import java.io.UnsupportedEncodingException;
import java.math.BigInteger;
import java.security.InvalidKeyException;
import java.util.HashMap;
import java.util.Map;

/**
 * 

The implementation of the UMAC (Universal Message Authentication * Code).

* *

The UMAC algorithms described are parameterized. This means * that various low-level choices, like the endian convention and the underlying * cryptographic primitive, have not been fixed. One must choose values for * these parameters before the authentication tag generated by UMAC (for * a given message, key, and nonce) becomes fully-defined. In this document * we provide two collections of parameter settings, and have named the sets * UMAC16 and UMAC32. The parameter sets have been chosen based on * experimentation and provide good performance on a wide variety of processors. * UMAC16 is designed to excel on processors which provide small-scale * SIMD parallelism of the type found in Intel's MMX and Motorola's AltiVec * instruction sets, while UMAC32 is designed to do well on processors * with good 32- and 64- bit support. UMAC32 may take advantage of SIMD * parallelism in future processors.

* *

UMAC has been designed to allow implementations which accommodate * on-line authentication. This means that pieces of the message may * be presented to UMAC at different times (but in correct order) and an * on-line implementation will be able to process the message correctly without * the need to buffer more than a few dozen bytes of the message. For * simplicity, the algorithms in this specification are presented as if the * entire message being authenticated were available at once.

* *

To authenticate a message, Msg, one first applies the * universal hash function, resulting in a string which is typically much * shorter than the original message. The pseudorandom function is applied to a * nonce, and the result is used in the manner of a Vernam cipher: the * authentication tag is the xor of the output from the hash function and the * output from the pseudorandom function. Thus, an authentication tag is * generated as

* *
 *    AuthTag = f(Nonce) xor h(Msg)
 * 
* *

Here f is the pseudorandom function shared between the sender * and the receiver, and h is a universal hash function shared by the sender and * the receiver. In UMAC, a shared key is used to key the pseudorandom * function f, and then f is used for both tag * generation and internally to generate all of the bits needed by the universal * hash function.

* *

The universal hash function that we use is called UHASH. It * combines several software-optimized algorithms into a multi-layered * structure. The algorithm is moderately complex. Some of this complexity comes * from extensive speed optimizations.

* *

For the pseudorandom function we use the block cipher of the Advanced * Encryption Standard (AES).

* *

The UMAC32 parameters, considered in this implementation are:

*
 *                                   UMAC32
 *                                   ------
 *        WORD-LEN                        4
 *        UMAC-OUTPUT-LEN                 8
 *        L1-KEY-LEN                   1024
 *        UMAC-KEY-LEN                   16
 *        ENDIAN-FAVORITE               BIG *
 *        L1-OPERATIONS-SIGN       UNSIGNED
 * 
* *

Please note that this UMAC32 differs from the one described in the paper * by the ENDIAN-FAVORITE value.

* *

References:

* *
    *
  1. * UMAC: Message Authentication Code using Universal Hashing.
    * T. Krovetz, J. Black, S. Halevi, A. Hevia, H. Krawczyk, and P. Rogaway.
  2. *
* * @version $Revision: 1.6 $ */ public class UMac32 extends BaseMac { // Constants and variables // ------------------------------------------------------------------------- /** * Property name of the user-supplied Nonce. The value associated to * this property name is taken to be a byte array. */ public static final String NONCE_MATERIAL = "gnu.crypto.umac.nonce.material"; /** Known test vector. */ // private static final String TV1 = "3E5A0E09198B0F94"; // private static final String TV1 = "5FD764A6D3A9FD9D"; // private static final String TV1 = "48658DE1D9A70304"; private static final String TV1 = "455ED214A6909F20"; private static final BigInteger MAX_NONCE_ITERATIONS = BigInteger.ONE.shiftLeft(16*8); // UMAC32 parameters static final int OUTPUT_LEN = 8; static final int L1_KEY_LEN = 1024; static final int KEY_LEN = 16; /** caches the result of the correctness test, once executed. */ private static Boolean valid; private byte[] nonce; private UHash32 uhash32; private BigInteger nonceReuseCount; /** The authentication key for this instance. */ private transient byte[] K; // Constructor(s) // ------------------------------------------------------------------------- /** Trivial 0-arguments constructor. */ public UMac32() { super("umac32"); } /** *

Private constructor for cloning purposes.

* * @param that the instance to clone. */ private UMac32(UMac32 that) { this(); if (that.K != null) { this.K = (byte[]) that.K.clone(); } if (that.nonce != null) { this.nonce = (byte[]) that.nonce.clone(); } if (that.uhash32 != null) { this.uhash32 = (UHash32) that.uhash32.clone(); } this.nonceReuseCount = that.nonceReuseCount; } // Class methods // ------------------------------------------------------------------------- // Instance methods // ------------------------------------------------------------------------- // java.lang.Cloneable interface implementation ---------------------------- public Object clone() { return new UMac32(this); } // gnu.crypto.mac.IMac interface implementation ---------------------------- public int macSize() { return OUTPUT_LEN; } /** *

Initialising a UMAC instance consists of defining values for * the following parameters:

* *
    *
  1. Key Material: as the value of the attribute entry keyed by * {@link #MAC_KEY_MATERIAL}. The value is taken to be a byte array * containing the user-specified key material. The length of this array, * if/when defined SHOULD be exactly equal to {@link #KEY_LEN}.
  2. * *
  3. Nonce Material: as the value of the attribute entry keyed by * {@link #NONCE_MATERIAL}. The value is taken to be a byte array * containing the user-specified nonce material. The length of this array, * if/when defined SHOULD be (a) greater than zero, and (b) less or equal * to 16 (the size of the AES block).
  4. *
* *

For convenience, this implementation accepts that not both parameters * be always specified.

* *
    *
  • If the Key Material is specified, but the Nonce Material * is not, then this implementation, re-uses the previously set Nonce * Material after (a) converting the bytes to an unsigned integer, * (b) incrementing the number by one, and (c) converting it back to 16 * bytes.
  • * *
  • If the Nonce Material is specified, but the Key Material * is not, then this implementation re-uses the previously set Key * Material.
  • *
* *

This method throws an exception if no Key Material is specified * in the input map, and there is no previously set/defined Key Material * (from an earlier invocation of this method). If a Key Material can * be used, but no Nonce Material is defined or previously set/defined, * then a default value of all-zeroes shall be used.

* * @param attributes one or both of required parameters. * @throws InvalidKeyException the key material specified is not of the * correct length. */ public void init(Map attributes) throws InvalidKeyException, IllegalStateException { byte[] key = (byte[]) attributes.get(MAC_KEY_MATERIAL); byte[] n = (byte[]) attributes.get(NONCE_MATERIAL); boolean newKey = (key != null); boolean newNonce = (n != null); if (newKey) { if (key.length != KEY_LEN) { throw new InvalidKeyException("Key length: "+String.valueOf(key.length)); } K = key; } else { if (K == null) { throw new InvalidKeyException("Null Key"); } } if (newNonce) { if (n.length < 1 || n.length > 16) { throw new IllegalArgumentException("Invalid Nonce length: " +String.valueOf(n.length)); } if (n.length < 16) { // pad with zeroes byte[] newN = new byte[16]; System.arraycopy(n, 0, newN, 0, n.length); nonce = newN; } else { nonce = n; } nonceReuseCount = BigInteger.ZERO; } else if (nonce == null) { // use all-0 nonce if 1st time nonce = new byte[16]; nonceReuseCount = BigInteger.ZERO; } else if (!newKey) { // increment nonce if still below max count nonceReuseCount = nonceReuseCount.add(BigInteger.ONE); if (nonceReuseCount.compareTo(MAX_NONCE_ITERATIONS) >= 0) { // limit reached. we SHOULD have a key throw new InvalidKeyException("Null Key and unusable old Nonce"); } BigInteger N = new BigInteger(1, nonce); N = N.add(BigInteger.ONE).mod(MAX_NONCE_ITERATIONS); n = N.toByteArray(); if (n.length == 16) { nonce = n; } else if (n.length < 16) { nonce = new byte[16]; System.arraycopy(n, 0, nonce, 16 - n.length, n.length); } else { nonce = new byte[16]; System.arraycopy(n, n.length - 16, nonce, 0, 16); } } else { // do nothing, re-use old nonce value nonceReuseCount = BigInteger.ZERO; } if (uhash32 == null) { uhash32 = new UHash32(); } Map map = new HashMap(); map.put(MAC_KEY_MATERIAL, K); uhash32.init(map); } public void update(byte b) { uhash32.update(b); } public void update(byte[] b, int offset, int len) { uhash32.update(b, offset, len); } public byte[] digest() { byte[] result = uhash32.digest(); byte[] pad = pdf(); // pdf(K, nonce); for (int i = 0; i < OUTPUT_LEN; i++) { result[i] = (byte)(result[i] ^ pad[i]); } return result; } public void reset() { if (uhash32 != null) { uhash32.reset(); } } public boolean selfTest() { if (valid == null) { byte[] key; try { key = "abcdefghijklmnop".getBytes("ASCII"); } catch (UnsupportedEncodingException x) { throw new RuntimeException("ASCII not supported"); } byte[] nonce = new byte[] { 0, 1, 2, 3, 4, 5, 6, 7 }; UMac32 mac = new UMac32(); Map attributes = new HashMap(); attributes.put(MAC_KEY_MATERIAL, key); attributes.put(NONCE_MATERIAL, nonce); try { mac.init(attributes); } catch (InvalidKeyException x) { x.printStackTrace(System.err); return false; } byte[] data = new byte[128]; data[0] = (byte) 0x80; mac.update(data, 0, 128); byte[] result = mac.digest(); // System.out.println("UMAC test vector: "+Util.toString(result)); valid = new Boolean(TV1.equals(Util.toString(result))); } return valid.booleanValue(); } // helper methods ---------------------------------------------------------- /** * * @return byte array of length 8 (or OUTPUT_LEN) bytes. */ private byte[] pdf() { // Make Nonce 16 bytes by prepending zeroes. done (see init()) // one AES invocation is enough for more than one PDF invocation // number of index bits needed = 1 // Extract index bits and zero low bits of Nonce BigInteger Nonce = new BigInteger(1, nonce); int nlowbitsnum = Nonce.testBit(0) ? 1 : 0; Nonce = Nonce.clearBit(0); // Generate subkey, AES and extract indexed substring IRandom kdf = new UMacGenerator(); Map map = new HashMap(); map.put(IBlockCipher.KEY_MATERIAL, K); // map.put(IBlockCipher.CIPHER_BLOCK_SIZE, new Integer(128/8)); map.put(UMacGenerator.INDEX, new Integer(128)); // map.put(UMacGenerator.CIPHER, Registry.AES_CIPHER); kdf.init(map); byte[] Kp = new byte[KEY_LEN]; try { kdf.nextBytes(Kp, 0, KEY_LEN); } catch (IllegalStateException x) { x.printStackTrace(System.err); throw new RuntimeException(String.valueOf(x)); } catch (LimitReachedException x) { x.printStackTrace(System.err); throw new RuntimeException(String.valueOf(x)); } IBlockCipher aes = CipherFactory.getInstance(Registry.AES_CIPHER); map.put(IBlockCipher.KEY_MATERIAL, Kp); try { aes.init(map); } catch (InvalidKeyException x) { x.printStackTrace(System.err); throw new RuntimeException(String.valueOf(x)); } catch (IllegalStateException x) { x.printStackTrace(System.err); throw new RuntimeException(String.valueOf(x)); } byte[] T = new byte[16]; aes.encryptBlock(nonce, 0, T, 0); byte[] result = new byte[OUTPUT_LEN]; System.arraycopy(T, nlowbitsnum, result, 0, OUTPUT_LEN); return result; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy