All Downloads are FREE. Search and download functionalities are using the official Maven repository.

gnu.crypto.mode.ICM Maven / Gradle / Ivy

The newest version!
package gnu.crypto.mode;

// ----------------------------------------------------------------------------
// $Id: ICM.java,v 1.6 2003/06/21 06:31:49 raif Exp $
//
// Copyright (C) 2001, 2002, 2003 Free Software Foundation, Inc.
//
// This file is part of GNU Crypto.
//
// GNU Crypto is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2, or (at your option)
// any later version.
//
// GNU Crypto is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; see the file COPYING.  If not, write to the
//
//    Free Software Foundation Inc.,
//    59 Temple Place - Suite 330,
//    Boston, MA 02111-1307
//    USA
//
// Linking this library statically or dynamically with other modules is
// making a combined work based on this library.  Thus, the terms and
// conditions of the GNU General Public License cover the whole
// combination.
//
// As a special exception, the copyright holders of this library give
// you permission to link this library with independent modules to
// produce an executable, regardless of the license terms of these
// independent modules, and to copy and distribute the resulting
// executable under terms of your choice, provided that you also meet,
// for each linked independent module, the terms and conditions of the
// license of that module.  An independent module is a module which is
// not derived from or based on this library.  If you modify this
// library, you may extend this exception to your version of the
// library, but you are not obligated to do so.  If you do not wish to
// do so, delete this exception statement from your version.
// ----------------------------------------------------------------------------

import gnu.crypto.Registry;
import gnu.crypto.cipher.IBlockCipher;

import java.math.BigInteger;

/**
 * 

An implementation of David McGrew Integer Counter Mode (ICM) as an * {@link IMode}.

* *

ICM is a way to define a pseudorandom keystream generator using a block * cipher. The keystream can be used for additive encryption, key derivation, * or any other application requiring pseudorandom data. In the case of this * class, it is used as additive encryption, XOR-ing the keystream with the * input text --for both encryption and decryption.

* *

In ICM, the keystream is logically broken into segments. Each segment is * identified with a segment index, and the segments have equal lengths. This * segmentation makes ICM especially appropriate for securing packet-based * protocols. ICM also allows a variety of configurations based, among other * things, on two parameters: the block index length and the * segment index length. A constraint on those two values exists: The sum * of segment index length and block index length must not * half the block size of the underlying cipher. This requirement protects * the ICM keystream generator from potentially failing to be pseudorandom.

* *

For simplicity, this implementation, fixes these two values to the * following:

* *
    *
  • block index length: is half the underlying cipher block size, and
  • *
  • segment index length: is zero.
  • *
* *

For a 128-bit block cipher, the above values imply a maximum keystream * length of 295,147,905,179,352,825,856 octets, since in ICM, each segment must * not exceed the value (256 ^ block index length) * block length * octets.

* *

Finally, for this implementation of the ICM, the IV placeholder will be * used to pass the value of the Offset in the keystream segment.

* *

References:

* *
    *
  1. * Integer Counter Mode, David A. McGrew.
  2. *
* * @version $Revision: 1.6 $ */ public class ICM extends BaseMode implements Cloneable { // Constants and variables // ------------------------------------------------------------------------- /** The integer value 256 as a BigInteger. */ private static final BigInteger TWO_FIFTY_SIX = new BigInteger("256"); /** Maximum number of blocks per segment. */ private BigInteger maxBlocksPerSegment; /** A work constant. */ private BigInteger counterRange; /** The initial counter for a given keystream segment. */ private BigInteger C0; /** The index of the next block for a given keystream segment. */ private BigInteger blockNdx; // Constructor(s) // ------------------------------------------------------------------------- /** *

Trivial package-private constructor for use by the Factory class.

* * @param underlyingCipher the underlying cipher implementation. * @param cipherBlockSize the underlying cipher block size to use. */ ICM(IBlockCipher underlyingCipher, int cipherBlockSize) { super(Registry.ICM_MODE, underlyingCipher, cipherBlockSize); } /** *

Private constructor for cloning purposes.

* * @param that the instance to clone. */ private ICM(ICM that) { this((IBlockCipher) that.cipher.clone(), that.cipherBlockSize); } // Class methods // ------------------------------------------------------------------------- // Cloneable interface implementation // ------------------------------------------------------------------------- public Object clone() { return new ICM(this); } // Implementation of abstract methods in BaseMode // ------------------------------------------------------------------------- public void setup() { if (modeBlockSize != cipherBlockSize) { throw new IllegalArgumentException(); } counterRange = TWO_FIFTY_SIX.pow(cipherBlockSize); maxBlocksPerSegment = TWO_FIFTY_SIX.pow(cipherBlockSize / 2); BigInteger r = new BigInteger(1, iv); C0 = maxBlocksPerSegment.add(r).modPow(BigInteger.ONE, counterRange); blockNdx = BigInteger.ZERO; } public void teardown() { counterRange = null; maxBlocksPerSegment = null; C0 = null; blockNdx = null; } public void encryptBlock(byte[] in, int i, byte[] out, int o) { icm(in, i, out, o); } public void decryptBlock(byte[] in, int i, byte[] out, int o) { icm(in, i, out, o); } // Instance methods // ------------------------------------------------------------------------- private void icm(byte[] in, int inOffset, byte[] out, int outOffset) { if (blockNdx.compareTo(maxBlocksPerSegment) >= 0) throw new RuntimeException("Maximum blocks for segment reached"); // encrypt the counter for the current blockNdx // C[i] = (C[0] + i) modulo (256^BLOCK_LENGTH). BigInteger Ci = C0.add(blockNdx).modPow(BigInteger.ONE, counterRange); byte[] result = Ci.toByteArray(); int limit = result.length; // if (limit < cipherBlockSize) { // byte[] data = new byte[cipherBlockSize]; // System.arraycopy(result, 0, data, cipherBlockSize-limit, limit); // result = data; // } else if (limit > cipherBlockSize) { // byte[] data = new byte[cipherBlockSize]; // System.arraycopy(result, limit-cipherBlockSize, data, 0, cipherBlockSize); // result = data; // } // // cipher.encryptBlock(result, 0, result, 0); // blockNdx = blockNdx.add(BigInteger.ONE); // increment blockNdx // for (int i = 0; i < modeBlockSize; ) { // xor result with input block // out[outOffset++] = (byte)(in[inOffset++] ^ result[i++]); // } int ndx = 0; if (limit < cipherBlockSize) { byte[] data = new byte[cipherBlockSize]; System.arraycopy(result, 0, data, cipherBlockSize-limit, limit); result = data; } else if (limit > cipherBlockSize) { ndx = limit-cipherBlockSize; } cipher.encryptBlock(result, ndx, result, ndx); blockNdx = blockNdx.add(BigInteger.ONE); // increment blockNdx for (int i = 0; i < modeBlockSize; i++) { // xor result with input block out[outOffset++] = (byte)(in[inOffset++] ^ result[ndx++]); } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy