gnu.crypto.prng.UMacGenerator Maven / Gradle / Ivy
package gnu.crypto.prng;
// ----------------------------------------------------------------------------
// $Id: UMacGenerator.java,v 1.5 2002/11/07 17:17:45 raif Exp $
//
// Copyright (C) 2001, 2002, Free Software Foundation, Inc.
//
// This file is part of GNU Crypto.
//
// GNU Crypto is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2, or (at your option)
// any later version.
//
// GNU Crypto is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; see the file COPYING. If not, write to the
//
// Free Software Foundation Inc.,
// 59 Temple Place - Suite 330,
// Boston, MA 02111-1307
// USA
//
// Linking this library statically or dynamically with other modules is
// making a combined work based on this library. Thus, the terms and
// conditions of the GNU General Public License cover the whole
// combination.
//
// As a special exception, the copyright holders of this library give
// you permission to link this library with independent modules to
// produce an executable, regardless of the license terms of these
// independent modules, and to copy and distribute the resulting
// executable under terms of your choice, provided that you also meet,
// for each linked independent module, the terms and conditions of the
// license of that module. An independent module is a module which is
// not derived from or based on this library. If you modify this
// library, you may extend this exception to your version of the
// library, but you are not obligated to do so. If you do not wish to
// do so, delete this exception statement from your version.
// ----------------------------------------------------------------------------
import gnu.crypto.Registry;
import gnu.crypto.cipher.CipherFactory;
import gnu.crypto.cipher.IBlockCipher;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.security.InvalidKeyException;
/**
* KDFs (Key Derivation Functions) are used to stretch user-supplied
* key material to specific size(s) required by high level cryptographic
* primitives. Described in the UMAC
* paper, this function basically operates an underlying symmetric key block
* cipher instance in output feedback mode (OFB), as a strong
* pseudo-random number generator.
*
* UMacGenerator
requires an index parameter
* (initialisation parameter gnu.crypto.prng.umac.kdf.index
taken
* to be an instance of {@link java.lang.Integer} with a value between
* 0
and 255
). Using the same key, but different
* indices, generates different pseudorandom outputs.
*
* This implementation generalises the definition of the
* UmacGenerator
algorithm to allow for other than the AES symetric
* key block cipher algorithm (initialisation parameter
* gnu.crypto.prng.umac.cipher.name
taken to be an instance of
* {@link java.lang.String}). If such a parameter is not defined/included in the
* initialisation Map
, then the "Rijndael" algorithm is used.
* Furthermore, if the initialisation parameter
* gnu.crypto.cipher.block.size
(taken to be a instance of {@link
* java.lang.Integer}) is missing or undefined in the initialisation Map
*
, then the cipher's default block size is used.
*
* NOTE: Rijndael is used as the default symmetric key block cipher
* algorithm because, with its default block and key sizes, it is the AES. Yet
* being Rijndael, the algorithm offers more versatile block and key sizes which
* may prove to be useful for generating "longer" key streams.
*
* References:
*
*
* -
* UMAC: Message Authentication Code using Universal Hashing.
* T. Krovetz, J. Black, S. Halevi, A. Hevia, H. Krawczyk, and P. Rogaway.
*
*
* @version $Revision: 1.5 $
*/
public class UMacGenerator extends BasePRNG {
// Constants and variables
// -------------------------------------------------------------------------
/**
* Property name of the KDF index
value to use in this
* instance. The value is taken to be an {@link Integer} less than
* 256
.
*/
public static final String INDEX = "gnu.crypto.prng.umac.index";
/** The name of the underlying symmetric key block cipher algorithm. */
public static final String CIPHER = "gnu.crypto.prng.umac.cipher.name";
/** The generator's underlying block cipher. */
private IBlockCipher cipher;
// Constructor(s)
// -------------------------------------------------------------------------
/** Trivial 0-arguments constructor. */
public UMacGenerator() {
super(Registry.UMAC_PRNG);
}
/**
* Private constructor for cloning purposes.
*
* @param that the instance to clone.
*/
private UMacGenerator(UMacGenerator that) {
this();
this.cipher = (that.cipher == null ? null : (IBlockCipher) that.cipher.clone());
this.initialised = that.initialised;
this.buffer = (byte[]) that.buffer.clone();
this.ndx = that.ndx;
}
// Class methods
// -------------------------------------------------------------------------
// Instance methods
// -------------------------------------------------------------------------
// java.lang.Cloneable interface implementation ----------------------------
public Object clone() {
return new UMacGenerator(this);
}
// Implementation of abstract methods in BasePRNG --------------------------
public void setup(Map attributes) {
boolean newCipher = true;
String cipherName = (String) attributes.get(CIPHER);
if (cipherName == null) {
if (cipher == null) { // happy birthday
cipher = CipherFactory.getInstance(Registry.RIJNDAEL_CIPHER);
} else { // we already have one. use it as is
newCipher = false;
}
} else {
cipher = CipherFactory.getInstance(cipherName);
}
// find out what block size we should use it in
int cipherBlockSize = 0;
Integer bs = (Integer) attributes.get(IBlockCipher.CIPHER_BLOCK_SIZE);
if (bs != null) {
cipherBlockSize = bs.intValue();
} else {
if (newCipher) { // assume we'll use its default block size
cipherBlockSize = cipher.defaultBlockSize();
} // else use as is
}
// get the key material
byte[] key = (byte[]) attributes.get(IBlockCipher.KEY_MATERIAL);
if (key == null) {
throw new IllegalArgumentException(IBlockCipher.KEY_MATERIAL);
}
int keyLength = key.length;
// ensure that keyLength is valid for the chosen underlying cipher
boolean ok = false;
for (Iterator it = cipher.keySizes(); it.hasNext(); ) {
ok = (keyLength == ((Integer) it.next()).intValue());
if (ok) {
break;
}
}
if (!ok) {
throw new IllegalArgumentException("key length");
}
// ensure that remaining params make sense
int index = -1;
Integer i = (Integer) attributes.get(INDEX);
if (i != null) {
index = i.intValue();
if (index < 0 || index > 255) {
throw new IllegalArgumentException(INDEX);
}
}
// now initialise the underlying cipher
Map map = new HashMap();
if (cipherBlockSize != 0) { // only needed if new or changed
map.put(IBlockCipher.CIPHER_BLOCK_SIZE, new Integer(cipherBlockSize));
}
map.put(IBlockCipher.KEY_MATERIAL, key);
try {
cipher.init(map);
} catch (InvalidKeyException x) {
throw new IllegalArgumentException(IBlockCipher.KEY_MATERIAL);
}
buffer = new byte[cipher.currentBlockSize()];
buffer[cipher.currentBlockSize() - 1] = (byte) index;
try {
fillBlock();
} catch (LimitReachedException impossible) {
}
}
public void fillBlock() throws LimitReachedException {
cipher.encryptBlock(buffer, 0, buffer, 0);
}
}