![JAR search and dependency download from the Maven repository](/logo.png)
gnu.crypto.sig.dss.DSSSignature Maven / Gradle / Ivy
package gnu.crypto.sig.dss;
// ----------------------------------------------------------------------------
// $Id: DSSSignature.java,v 1.8 2003/10/25 03:58:56 raif Exp $
//
// Copyright (C) 2001, 2002, 2003 Free Software Foundation, Inc.
//
// This file is part of GNU Crypto.
//
// GNU Crypto is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2, or (at your option)
// any later version.
//
// GNU Crypto is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; see the file COPYING. If not, write to the
//
// Free Software Foundation Inc.,
// 59 Temple Place - Suite 330,
// Boston, MA 02111-1307
// USA
//
// Linking this library statically or dynamically with other modules is
// making a combined work based on this library. Thus, the terms and
// conditions of the GNU General Public License cover the whole
// combination.
//
// As a special exception, the copyright holders of this library give
// you permission to link this library with independent modules to
// produce an executable, regardless of the license terms of these
// independent modules, and to copy and distribute the resulting
// executable under terms of your choice, provided that you also meet,
// for each linked independent module, the terms and conditions of the
// license of that module. An independent module is a module which is
// not derived from or based on this library. If you modify this
// library, you may extend this exception to your version of the
// library, but you are not obligated to do so. If you do not wish to
// do so, delete this exception statement from your version.
// ----------------------------------------------------------------------------
import gnu.crypto.Registry;
import gnu.crypto.hash.IMessageDigest;
import gnu.crypto.hash.Sha160;
import gnu.crypto.prng.IRandom;
import gnu.crypto.sig.BaseSignature;
import gnu.crypto.sig.ISignature;
import java.math.BigInteger;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.interfaces.DSAPrivateKey;
import java.security.interfaces.DSAPublicKey;
import java.util.HashMap;
import java.util.Map;
import java.util.Random;
/**
* The DSS (Digital Signature Standard) algorithm makes use of the following
* parameters:
*
*
* - p: A prime modulus, where
2L-1 < p < 2L
*
for 512 <= L <= 1024
and L
a
* multiple of 64
.
* - q: A prime divisor of
p - 1
, where 2159
* < q < 2160
.
* - g: Where
g = h(p-1)/q mod p
, where
* h
is any integer with 1 < h < p - 1
such
* that h (p-1)/q mod p > 1
(g
has order
* q mod p
).
* - x: A randomly or pseudorandomly generated integer with
0 < x
* < q
.
* - y:
y = gx mod p
.
* - k: A randomly or pseudorandomly generated integer with
0 < k
* < q
.
*
*
* The integers p
, q
, and g
can be
* public and can be common to a group of users. A user's private and public
* keys are x
and y
, respectively. They are normally
* fixed for a period of time. Parameters x
and k
are
* used for signature generation only, and must be kept secret. Parameter
* k
must be regenerated for each signature.
*
* The signature of a message M
is the pair of numbers r
* and s
computed according to the equations below:
*
*
* r = (gk mod p) mod q
and
* s = (k-1(SHA(M) + xr)) mod q
.
*
*
* In the above, k-1
is the multiplicative inverse of
* k
, mod q
; i.e., (k-1 k) mod q = 1
*
and 0 < k-1 < q
. The value of SHA(M)
* is a 160-bit string output by the Secure Hash Algorithm specified in FIPS 180.
* For use in computing s
, this string must be converted to an
* integer.
*
* As an option, one may wish to check if r == 0
or s == 0
*
. If either r == 0
or s == 0
, a new value
* of k
should be generated and the signature should be
* recalculated (it is extremely unlikely that r == 0
or s ==
* 0
if signatures are generated properly).
*
* The signature is transmitted along with the message to the verifier.
*
* References:
*
* - Digital
* Signature Standard (DSS), Federal Information Processing Standards
* Publication 186. National Institute of Standards and Technology.
*
*
* @version $Revision: 1.8 $
*/
public class DSSSignature extends BaseSignature {
// Constants and variables
// -------------------------------------------------------------------------
// Constructor(s)
// -------------------------------------------------------------------------
/** Trivial 0-arguments constructor. */
public DSSSignature() {
super(Registry.DSS_SIG, new Sha160());
}
/** Private constructor for cloning purposes. */
private DSSSignature(DSSSignature that) {
this();
this.publicKey = that.publicKey;
this.privateKey = that.privateKey;
this.md = (IMessageDigest) that.md.clone();
}
// Class methods
// -------------------------------------------------------------------------
public static final BigInteger[] sign(final DSAPrivateKey k, final byte[] h) {
final DSSSignature sig = new DSSSignature();
final Map attributes = new HashMap();
attributes.put(ISignature.SIGNER_KEY, k);
sig.setupSign(attributes);
return sig.computeRS(h);
}
public static final BigInteger[]
sign(final DSAPrivateKey k, final byte[] h, Random rnd) {
final DSSSignature sig = new DSSSignature();
final Map attributes = new HashMap();
attributes.put(ISignature.SIGNER_KEY, k);
if (rnd != null) {
attributes.put(ISignature.SOURCE_OF_RANDOMNESS, rnd);
}
sig.setupSign(attributes);
return sig.computeRS(h);
}
public static final BigInteger[]
sign(final DSAPrivateKey k, final byte[] h, IRandom irnd) {
final DSSSignature sig = new DSSSignature();
final Map attributes = new HashMap();
attributes.put(ISignature.SIGNER_KEY, k);
if (irnd != null) {
attributes.put(ISignature.SOURCE_OF_RANDOMNESS, irnd);
}
sig.setupSign(attributes);
return sig.computeRS(h);
}
public static final boolean
verify(final DSAPublicKey k, final byte[] h, final BigInteger[] rs) {
final DSSSignature sig = new DSSSignature();
final Map attributes = new HashMap();
attributes.put(ISignature.VERIFIER_KEY, k);
sig.setupVerify(attributes);
return sig.checkRS(rs, h);
}
// Implementation of abstract methods in superclass
// -------------------------------------------------------------------------
public Object clone() {
return new DSSSignature(this);
}
protected void setupForVerification(PublicKey k)
throws IllegalArgumentException {
if (!(k instanceof DSAPublicKey)) {
throw new IllegalArgumentException();
}
this.publicKey = k;
}
protected void setupForSigning(PrivateKey k)
throws IllegalArgumentException {
if (!(k instanceof DSAPrivateKey)) {
throw new IllegalArgumentException();
}
this.privateKey = k;
}
protected Object generateSignature() throws IllegalStateException {
// BigInteger p = ((DSAPrivateKey) privateKey).getParams().getP();
// BigInteger q = ((DSAPrivateKey) privateKey).getParams().getQ();
// BigInteger g = ((DSAPrivateKey) privateKey).getParams().getG();
// BigInteger x = ((DSAPrivateKey) privateKey).getX();
// BigInteger m = new BigInteger(1, md.digest());
// BigInteger k, r, s;
//
// byte[] kb = new byte[20]; // we'll use 159 bits only
// while (true) {
// this.nextRandomBytes(kb);
// k = new BigInteger(1, kb);
// k.clearBit(159);
// r = g.modPow(k, p).mod(q);
// if (r.equals(BigInteger.ZERO)) {
// continue;
// }
// s = m.add(x.multiply(r)).multiply(k.modInverse(q)).mod(q);
// if (s.equals(BigInteger.ZERO)) {
// continue;
// }
// break;
// }
final BigInteger[] rs = computeRS(md.digest());
// return encodeSignature(r, s);
return encodeSignature(rs[0], rs[1]);
}
protected boolean verifySignature(Object sig) throws IllegalStateException {
final BigInteger[] rs = decodeSignature(sig);
// BigInteger r = rs[0];
// BigInteger s = rs[1];
//
// BigInteger g = ((DSAPublicKey) publicKey).getParams().getG();
// BigInteger p = ((DSAPublicKey) publicKey).getParams().getP();
// BigInteger q = ((DSAPublicKey) publicKey).getParams().getQ();
// BigInteger y = ((DSAPublicKey) publicKey).getY();
// BigInteger w = s.modInverse(q);
//
// byte bytes[] = md.digest();
// BigInteger u1 = w.multiply(new BigInteger(1, bytes)).mod(q);
// BigInteger u2 = r.multiply(w).mod(q);
//
// BigInteger v = g.modPow(u1, p).multiply(y.modPow(u2, p)).mod(p).mod(q);
// return v.equals(r);
return checkRS(rs, md.digest());
}
// Other instance methods
// -------------------------------------------------------------------------
/**
* Returns the output of a signature generation phase.
*
* @return an object encapsulating the DSS signature pair r
and
* s
.
*/
private Object encodeSignature(BigInteger r, BigInteger s) {
return new BigInteger[] {r, s};
}
/**
* Returns the output of a previously generated signature object as a pair
* of {@link java.math.BigInteger}.
*
* @return the DSS signature pair r
and s
.
*/
private BigInteger[] decodeSignature(Object signature) {
return (BigInteger[]) signature;
}
private BigInteger[] computeRS(final byte[] digestBytes) {
final BigInteger p = ((DSAPrivateKey) privateKey).getParams().getP();
final BigInteger q = ((DSAPrivateKey) privateKey).getParams().getQ();
final BigInteger g = ((DSAPrivateKey) privateKey).getParams().getG();
final BigInteger x = ((DSAPrivateKey) privateKey).getX();
final BigInteger m = new BigInteger(1, digestBytes);
BigInteger k, r, s;
final byte[] kb = new byte[20]; // we'll use 159 bits only
while (true) {
this.nextRandomBytes(kb);
k = new BigInteger(1, kb);
k.clearBit(159);
r = g.modPow(k, p).mod(q);
if (r.equals(BigInteger.ZERO)) {
continue;
}
s = m.add(x.multiply(r)).multiply(k.modInverse(q)).mod(q);
if (s.equals(BigInteger.ZERO)) {
continue;
}
break;
}
return new BigInteger[] {r, s};
}
private boolean checkRS(final BigInteger[] rs, final byte[] digestBytes) {
final BigInteger r = rs[0];
final BigInteger s = rs[1];
final BigInteger g = ((DSAPublicKey) publicKey).getParams().getG();
final BigInteger p = ((DSAPublicKey) publicKey).getParams().getP();
final BigInteger q = ((DSAPublicKey) publicKey).getParams().getQ();
final BigInteger y = ((DSAPublicKey) publicKey).getY();
final BigInteger w = s.modInverse(q);
final BigInteger u1 = w.multiply(new BigInteger(1, digestBytes)).mod(q);
final BigInteger u2 = r.multiply(w).mod(q);
final BigInteger v = g.modPow(u1, p).multiply(y.modPow(u2, p)).mod(p).mod(q);
return v.equals(r);
}
}