All Downloads are FREE. Search and download functionalities are using the official Maven repository.

gnu.crypto.sig.rsa.EMSA_PSS Maven / Gradle / Ivy

The newest version!
package gnu.crypto.sig.rsa;

// ----------------------------------------------------------------------------
// $Id: EMSA_PSS.java,v 1.7 2003/09/27 00:00:30 raif Exp $
//
// Copyright (C) 2001, 2002, 2003 Free Software Foundation, Inc.
//
// This file is part of GNU Crypto.
//
// GNU Crypto is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2, or (at your option)
// any later version.
//
// GNU Crypto is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; see the file COPYING.  If not, write to the
//
//    Free Software Foundation Inc.,
//    59 Temple Place - Suite 330,
//    Boston, MA 02111-1307
//    USA
//
// Linking this library statically or dynamically with other modules is
// making a combined work based on this library.  Thus, the terms and
// conditions of the GNU General Public License cover the whole
// combination.
//
// As a special exception, the copyright holders of this library give
// you permission to link this library with independent modules to
// produce an executable, regardless of the license terms of these
// independent modules, and to copy and distribute the resulting
// executable under terms of your choice, provided that you also meet,
// for each linked independent module, the terms and conditions of the
// license of that module.  An independent module is a module which is
// not derived from or based on this library.  If you modify this
// library, you may extend this exception to your version of the
// library, but you are not obligated to do so.  If you do not wish to
// do so, delete this exception statement from your version.
// ----------------------------------------------------------------------------

import gnu.crypto.hash.HashFactory;
import gnu.crypto.hash.IMessageDigest;
import gnu.crypto.util.Util;

import java.io.PrintWriter;
import java.util.Arrays;

/**
 * 

An implementation of the EMSA-PSS encoding/decoding scheme.

* *

EMSA-PSS coincides with EMSA4 in IEEE P1363a D5 except that EMSA-PSS acts * on octet strings and not on bit strings. In particular, the bit lengths of * the hash and the salt must be multiples of 8 in EMSA-PSS. Moreover, EMSA4 * outputs an integer of a desired bit length rather than an octet string.

* *

EMSA-PSS is parameterized by the choice of hash function Hash and mask * generation function MGF. In this submission, MGF is based on a Hash * definition that coincides with the corresponding definitions in IEEE Std * 1363-2000, PKCS #1 v2.0, and the draft ANSI X9.44. In PKCS #1 v2.0 and the * draft ANSI X9.44, the recommended hash function is SHA-1, while IEEE Std * 1363-2000 recommends SHA-1 and RIPEMD-160.

* *

References:

*
    *
  1. * RSA-PSS Signature Scheme with Appendix, part B.
    * Primitive specification and supporting documentation.
    * Jakob Jonsson and Burt Kaliski.
  2. *
* * @version $Revision: 1.7 $ */ public class EMSA_PSS implements Cloneable { // Debugging methods and variables // ------------------------------------------------------------------------- private static final String NAME = "emsa-pss"; private static final boolean DEBUG = false; private static final int debuglevel = 5; private static final PrintWriter err = new PrintWriter(System.out, true); private static void debug(String s) { err.println(">>> "+NAME+": "+s); } // Constants and variables // ------------------------------------------------------------------------- /** The underlying hash function to use with this instance. */ private IMessageDigest hash; /** The output size of the hash function in octets. */ private int hLen; // Constructor(s) // ------------------------------------------------------------------------- /** *

Trivial private constructor to enforce use through Factory method.

* * @param hash the message digest instance to use with this scheme instance. */ private EMSA_PSS(IMessageDigest hash) { super(); this.hash = hash; hLen = hash.hashSize(); } // Class methods // ------------------------------------------------------------------------- /** *

Returns an instance of this object given a designated name of a hash * function.

* * @param mdName the canonical name of a hash function. * @return an instance of this object configured for use with the designated * options. */ public static EMSA_PSS getInstance(String mdName) { IMessageDigest hash = HashFactory.getInstance(mdName); return new EMSA_PSS(hash); } // Instance methods // ------------------------------------------------------------------------- // Cloneable interface implementation -------------------------------------- public Object clone() { return getInstance(hash.name()); } // own methods ------------------------------------------------------------- /** *

The encoding operation EMSA-PSS-Encode computes the hash of a message * M using a hash function and maps the result to an encoded * message EM of a specified length using a mask generation * function.

* * @param mHash the byte sequence resulting from applying the message digest * algorithm Hash to the message M. * @param emBits the maximal bit length of the integer OS2IP(EM), at least * 8.hLen + 8.sLen + 9. * @param salt the salt to use when encoding the output. * @return the encoded message EM, an octet string of length * emLen = CEILING(emBits / 8). * @exception IllegalArgumentException if an exception occurs. * */ public byte[] encode(byte[] mHash, int emBits, byte[] salt) { int sLen = salt.length; // 1. If the length of M is greater than the input limitation for the hash // function (2**61 - 1 octets for SHA-1) then output "message too long" // and stop. // 2. Let mHash = Hash(M), an octet string of length hLen. if (hLen != mHash.length) { throw new IllegalArgumentException("wrong hash"); } // 3. If emBits < 8.hLen + 8.sLen + 9, output 'encoding error' and stop. if (emBits < (8*hLen + 8*sLen + 9)) { throw new IllegalArgumentException("encoding error"); } int emLen = (emBits + 7) / 8; // 4. Generate a random octet string salt of length sLen; if sLen = 0, // then salt is the empty string. // ...passed as argument to accomodate JCE // 5. Let M0 = 00 00 00 00 00 00 00 00 || mHash || salt; // M0 is an octet string of length 8 + hLen + sLen with eight initial zero // octets. // 6. Let H = Hash(M0), an octet string of length hLen. byte[] H; int i; synchronized (hash) { for (i = 0; i < 8; i++) { hash.update((byte) 0x00); } hash.update(mHash, 0, hLen); hash.update(salt, 0, sLen); H = hash.digest(); } // 7. Generate an octet string PS consisting of emLen - sLen - hLen - 2 // zero octets. The length of PS may be 0. // 8. Let DB = PS || 01 || salt. byte[] DB = new byte[emLen - sLen - hLen - 2 + 1 + sLen]; DB[emLen - sLen - hLen - 2] = 0x01; System.arraycopy(salt, 0, DB, emLen - sLen - hLen - 1, sLen); // 9. Let dbMask = MGF(H, emLen - hLen - 1). byte[] dbMask = MGF(H, emLen - hLen - 1); if (DEBUG && debuglevel > 8) { debug("dbMask (encode): "+Util.toString(dbMask)); debug("DB (encode): "+Util.toString(DB)); } // 10. Let maskedDB = DB XOR dbMask. for (i = 0; i < DB.length; i++) { DB[i] = (byte)(DB[i] ^ dbMask[i]); } // 11. Set the leftmost 8emLen - emBits bits of the leftmost octet in // maskedDB to zero. DB[0] &= (0xFF >>> (8*emLen - emBits)); // 12. Let EM = maskedDB || H || bc, where bc is the single octet with // hexadecimal value 0xBC. byte[] result = new byte[emLen]; System.arraycopy(DB, 0, result, 0, emLen - hLen - 1); System.arraycopy(H, 0, result, emLen - hLen - 1, hLen); result[emLen - 1] = (byte) 0xBC; // 13. Output EM. return result; } /** *

The decoding operation EMSA-PSS-Decode recovers the message hash from * an encoded message EM and compares it to the hash of * M.

* * @param mHash the byte sequence resulting from applying the message digest * algorithm Hash to the message M. * @param EM the encoded message, an octet string of length * emLen = CEILING(emBits/8). * @param emBits the maximal bit length of the integer OS2IP(EM), at least * 8.hLen + 8.sLen + 9. * @param sLen the length, in octets, of the expected salt. * @return true if the result of the verification was * consistent with the expected reseult; and false if the * result was inconsistent. * @exception IllegalArgumentException if an exception occurs. */ public boolean decode(byte[] mHash, byte[] EM, int emBits, int sLen) { if (DEBUG && debuglevel > 8) { debug("mHash: "+Util.toString(mHash)); debug("EM: "+Util.toString(EM)); debug("emBits: "+String.valueOf(emBits)); debug("sLen: "+String.valueOf(sLen)); } if (sLen < 0) { throw new IllegalArgumentException("sLen"); } // 1. If the length of M is greater than the input limitation for the hash // function (2**61 ? 1 octets for SHA-1) then output 'inconsistent' and // stop. // 2. Let mHash = Hash(M), an octet string of length hLen. if (hLen != mHash.length) { if (DEBUG && debuglevel > 8) { debug("hLen != mHash.length; hLen: "+String.valueOf(hLen)); } throw new IllegalArgumentException("wrong hash"); } // 3. If emBits < 8.hLen + 8.sLen + 9, output 'decoding error' and stop. if (emBits < (8*hLen + 8*sLen + 9)) { if (DEBUG && debuglevel > 8) { debug("emBits < (8hLen + 8sLen + 9); sLen: "+String.valueOf(sLen)); } throw new IllegalArgumentException("decoding error"); } int emLen = (emBits + 7) / 8; // 4. If the rightmost octet of EM does not have hexadecimal value bc, // output 'inconsistent' and stop. if ((EM[EM.length - 1] & 0xFF) != 0xBC) { if (DEBUG && debuglevel > 8) { debug("EM does not end with 0xBC"); } return false; } // 5. Let maskedDB be the leftmost emLen ? hLen ? 1 octets of EM, and let // H be the next hLen octets. // 6. If the leftmost 8.emLen ? emBits bits of the leftmost octet in // maskedDB are not all equal to zero, output 'inconsistent' and stop. if ((EM[0] & (0xFF << (8 - (8*emLen - emBits)))) != 0) { if (DEBUG && debuglevel > 8) { debug("Leftmost 8emLen - emBits bits of EM are not 0s"); } return false; } byte[] DB = new byte[emLen - hLen - 1]; byte[] H = new byte[hLen]; System.arraycopy(EM, 0, DB, 0, emLen - hLen - 1); System.arraycopy(EM, emLen - hLen - 1, H, 0, hLen); // 7. Let dbMask = MGF(H, emLen ? hLen ? 1). byte[] dbMask = MGF(H, emLen - hLen - 1); // 8. Let DB = maskedDB XOR dbMask. int i; for (i = 0; i < DB.length; i++) { DB[i] = (byte)(DB[i] ^ dbMask[i]); } // 9. Set the leftmost 8.emLen ? emBits bits of DB to zero. DB[0] &= (0xFF >>> (8*emLen - emBits)); if (DEBUG && debuglevel > 8) { debug("dbMask (decode): "+Util.toString(dbMask)); debug("DB (decode): "+Util.toString(DB)); } // 10. If the emLen -hLen -sLen -2 leftmost octets of DB are not zero or // if the octet at position emLen -hLen -sLen -1 is not equal to 0x01, // output 'inconsistent' and stop. // IMPORTANT (rsn): this is an error in the specs, the index of the 0x01 // byte should be emLen -hLen -sLen -2 and not -1! authors have been // advised for (i = 0; i < (emLen - hLen - sLen - 2); i++) { if (DB[i] != 0) { if (DEBUG && debuglevel > 8) { debug("DB["+String.valueOf(i)+"] != 0x00"); } return false; } } if (DB[i] != 0x01) { // i == emLen -hLen -sLen -2 if (DEBUG && debuglevel > 8) { debug("DB's byte at position (emLen -hLen -sLen -2); i.e. " +String.valueOf(i)+" is not 0x01"); } return false; } // 11. Let salt be the last sLen octets of DB. byte[] salt = new byte[sLen]; System.arraycopy(DB, DB.length - sLen, salt, 0, sLen); // 12. Let M0 = 00 00 00 00 00 00 00 00 || mHash || salt; // M0 is an octet string of length 8 + hLen + sLen with eight initial // zero octets. // 13. Let H0 = Hash(M0), an octet string of length hLen. byte[] H0; synchronized (hash) { for (i = 0; i < 8; i++) { hash.update((byte) 0x00); } hash.update(mHash, 0, hLen); hash.update(salt, 0, sLen); H0 = hash.digest(); } // 14. If H = H0, output 'consistent.' Otherwise, output 'inconsistent.' return Arrays.equals(H, H0); } // helper methods ---------------------------------------------------------- /** *

A mask generation function takes an octet string of variable length * and a desired output length as input, and outputs an octet string of the * desired length. There may be restrictions on the length of the input and * output octet strings, but such bounds are generally very large. Mask * generation functions are deterministic; the octet string output is * completely determined by the input octet string. The output of a mask * generation function should be pseudorandom, that is, it should be * infeasible to predict, given one part of the output but not the input, * another part of the output. The provable security of RSA-PSS relies on * the random nature of the output of the mask generation function, which in * turn relies on the random nature of the underlying hash function.

* * @param Z a seed. * @param l the desired output length in octets. * @return the mask. * @exception IllegalArgumentException if the desired output length is too * long. */ private byte[] MGF(byte[] Z, int l) { // 1. If l > (2**32).hLen, output 'mask too long' and stop. if (l < 1 || (l & 0xFFFFFFFFL) > ((hLen & 0xFFFFFFFFL) << 32L)) { throw new IllegalArgumentException("mask too long"); } // 2. Let T be the empty octet string. byte[] result = new byte[l]; // 3. For i = 0 to CEILING(l/hLen) ? 1, do int limit = ((l + hLen - 1) / hLen) - 1; IMessageDigest hashZ = null; hashZ = (IMessageDigest) hash.clone(); hashZ.digest(); hashZ.update(Z, 0, Z.length); IMessageDigest hashZC = null; byte[] t; int sofar = 0; int length; for (int i = 0; i < limit; i++) { // 3.1 Convert i to an octet string C of length 4 with the primitive // I2OSP: C = I2OSP(i, 4). // 3.2 Concatenate the hash of the seed Z and C to the octet string T: // T = T || Hash(Z || C) hashZC = (IMessageDigest) hashZ.clone(); hashZC.update((byte)(i >>> 24)); hashZC.update((byte)(i >>> 16)); hashZC.update((byte)(i >>> 8)); hashZC.update((byte) i ); t = hashZC.digest(); length = l - sofar; length = (length > hLen ? hLen : length); System.arraycopy(t, 0, result, sofar, length); sofar += length; } // 4. Output the leading l octets of T as the octet string mask. return result; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy