All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.graalvm.compiler.phases.graph.FixedNodeRelativeFrequencyCache Maven / Gradle / Ivy

There is a newer version: 24.1.1
Show newest version
/*
 * Copyright (c) 2014, 2022, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */
package org.graalvm.compiler.phases.graph;

import static org.graalvm.compiler.nodes.cfg.ControlFlowGraph.multiplyRelativeFrequencies;

import java.util.function.ToDoubleFunction;

import org.graalvm.collections.EconomicMap;
import org.graalvm.collections.Equivalence;
import org.graalvm.compiler.debug.CounterKey;
import org.graalvm.compiler.debug.DebugContext;
import org.graalvm.compiler.graph.Graph;
import org.graalvm.compiler.graph.Node;
import org.graalvm.compiler.graph.NodeInputList;
import org.graalvm.compiler.nodes.AbstractBeginNode;
import org.graalvm.compiler.nodes.AbstractEndNode;
import org.graalvm.compiler.nodes.AbstractMergeNode;
import org.graalvm.compiler.nodes.ControlSplitNode;
import org.graalvm.compiler.nodes.EndNode;
import org.graalvm.compiler.nodes.FixedNode;
import org.graalvm.compiler.nodes.LoopBeginNode;
import org.graalvm.compiler.nodes.StartNode;
import org.graalvm.compiler.nodes.cfg.ControlFlowGraph;

/**
 * Compute relative frequencies for fixed nodes on the fly and cache them at
 * {@link AbstractBeginNode}s.
 */
public class FixedNodeRelativeFrequencyCache implements ToDoubleFunction {

    private static final CounterKey computeNodeRelativeFrequencyCounter = DebugContext.counter("ComputeNodeRelativeFrequency");

    private final EconomicMap cache = EconomicMap.create(Equivalence.IDENTITY);

    private ControlFlowGraph lastCFG = null;
    private Graph.Mark lastCFGMark = null;

    /**
     * 

* Given a {@link FixedNode} this method finds the most immediate {@link AbstractBeginNode} * preceding it that either: *

    *
  • has no predecessor (ie, the begin-node is a merge, in particular a loop-begin, or the * start-node)
  • *
  • has a control-split predecessor
  • *
*

* *

* The thus found {@link AbstractBeginNode} is equi-probable with the {@link FixedNode} it was * obtained from. When computed for the first time (afterwards a cache lookup returns it) that * relative frequency is computed as follows, again depending on the begin-node's predecessor: *

    *
  • No predecessor. In this case the begin-node is either:
  • *
      *
    • a merge-node, whose relative frequency adds up those of its forward-ends
    • *
    • a loop-begin, with frequency as above multiplied by the loop-frequency
    • *
    *
  • Control-split predecessor: frequency of the branch times that of the control-split
  • *
*

* *

* As an exception to all the above, a frequency of 1 is assumed for a {@link FixedNode} that * appears to be dead-code (ie, lacks a predecessor). *

* */ @Override public double applyAsDouble(FixedNode node) { assert node != null; computeNodeRelativeFrequencyCounter.increment(node.getDebug()); FixedNode current = findBegin(node); if (current == null) { // this should only appear for dead code return 1D; } assert current instanceof AbstractBeginNode; Double cachedValue = cache.get(current); if (cachedValue != null) { return cachedValue; } double relativeFrequency = 0.0; if (current.predecessor() == null) { if (current instanceof AbstractMergeNode) { relativeFrequency = handleMerge(current, relativeFrequency); } else { assert current instanceof StartNode; relativeFrequency = 1D; } } else { ControlSplitNode split = (ControlSplitNode) current.predecessor(); relativeFrequency = multiplyRelativeFrequencies(split.probability((AbstractBeginNode) current), applyAsDouble(split)); } assert !Double.isNaN(relativeFrequency) && !Double.isInfinite(relativeFrequency) : current + " " + relativeFrequency; cache.put(current, relativeFrequency); return relativeFrequency; } private double handleMerge(FixedNode current, double relativeFrequency) { double result = relativeFrequency; AbstractMergeNode currentMerge = (AbstractMergeNode) current; NodeInputList currentForwardEnds = currentMerge.forwardEnds(); /* * Use simple iteration instead of streams, since the stream infrastructure adds many frames * which causes the recursion to overflow the stack earlier than it would otherwise. */ for (AbstractEndNode endNode : currentForwardEnds) { result += applyAsDouble(endNode); } if (current instanceof LoopBeginNode) { computeLazyCFG(current); result = multiplyRelativeFrequencies(result, lastCFG.localLoopFrequency(((LoopBeginNode) current))); } return result; } private void computeLazyCFG(FixedNode node) { if (lastCFG == null || !lastCFGMark.isCurrent()) { lastCFG = ControlFlowGraph.compute(node.graph(), false, false, false, false); lastCFGMark = node.graph().getMark(); } } private static FixedNode findBegin(FixedNode node) { FixedNode current = node; while (true) { assert current != null; Node predecessor = current.predecessor(); if (current instanceof AbstractBeginNode) { if (predecessor == null) { break; } else if (predecessor.successors().count() != 1) { assert predecessor instanceof ControlSplitNode : "a FixedNode with multiple successors needs to be a ControlSplitNode: " + current + " / " + predecessor; break; } } else if (predecessor == null) { current = null; break; } current = (FixedNode) predecessor; } return current; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy