All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.linear.ConjugateGradient Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.linear;

import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.exception.util.ExceptionContext;
import org.apache.commons.math3.util.IterationManager;

/**
 * 

* This is an implementation of the conjugate gradient method for * {@link RealLinearOperator}. It follows closely the template by Barrett et al. (1994) (figure 2.5). The linear system at * hand is A · x = b, and the residual is r = b - A · x. *

*

Default stopping criterion

*

* A default stopping criterion is implemented. The iterations stop when || r || * ≤ δ || b ||, where b is the right-hand side vector, r the current * estimate of the residual, and δ a user-specified tolerance. It should * be noted that r is the so-called updated residual, which might * differ from the true residual due to rounding-off errors (see e.g. Strakos and Tichy, 2002). *

*

Iteration count

*

* In the present context, an iteration should be understood as one evaluation * of the matrix-vector product A · x. The initialization phase therefore * counts as one iteration. *

*

Exception context

*

* Besides standard {@link DimensionMismatchException}, this class might throw * {@link NonPositiveDefiniteOperatorException} if the linear operator or * the preconditioner are not positive definite. In this case, the * {@link ExceptionContext} provides some more information *

    *
  • key {@code "operator"} points to the offending linear operator, say L,
  • *
  • key {@code "vector"} points to the offending vector, say x, such that * xT · L · x < 0.
  • *
*

*

References

*
*
Barret et al. (1994)
*
R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. M. Donato, J. Dongarra, * V. Eijkhout, R. Pozo, C. Romine and H. Van der Vorst, * * Templates for the Solution of Linear Systems: Building Blocks for Iterative * Methods, SIAM
*
Strakos and Tichy (2002) *
*
Z. Strakos and P. Tichy, * On error estimation in the conjugate gradient method and why it works * in finite precision computations, Electronic Transactions on * Numerical Analysis 13: 56-80, 2002
*
* * @version $Id: ConjugateGradient.java 1416643 2012-12-03 19:37:14Z tn $ * @since 3.0 */ public class ConjugateGradient extends PreconditionedIterativeLinearSolver { /** Key for the exception context. */ public static final String OPERATOR = "operator"; /** Key for the exception context. */ public static final String VECTOR = "vector"; /** * {@code true} if positive-definiteness of matrix and preconditioner should * be checked. */ private boolean check; /** The value of δ, for the default stopping criterion. */ private final double delta; /** * Creates a new instance of this class, with default * stopping criterion. * * @param maxIterations the maximum number of iterations * @param delta the δ parameter for the default stopping criterion * @param check {@code true} if positive definiteness of both matrix and * preconditioner should be checked */ public ConjugateGradient(final int maxIterations, final double delta, final boolean check) { super(maxIterations); this.delta = delta; this.check = check; } /** * Creates a new instance of this class, with default * stopping criterion and custom iteration manager. * * @param manager the custom iteration manager * @param delta the δ parameter for the default stopping criterion * @param check {@code true} if positive definiteness of both matrix and * preconditioner should be checked * @throws NullArgumentException if {@code manager} is {@code null} */ public ConjugateGradient(final IterationManager manager, final double delta, final boolean check) throws NullArgumentException { super(manager); this.delta = delta; this.check = check; } /** * Returns {@code true} if positive-definiteness should be checked for both * matrix and preconditioner. * * @return {@code true} if the tests are to be performed */ public final boolean getCheck() { return check; } /** * {@inheritDoc} * * @throws NonPositiveDefiniteOperatorException if {@code a} or {@code m} is * not positive definite */ @Override public RealVector solveInPlace(final RealLinearOperator a, final RealLinearOperator m, final RealVector b, final RealVector x0) throws NullArgumentException, NonPositiveDefiniteOperatorException, NonSquareOperatorException, DimensionMismatchException, MaxCountExceededException, NonPositiveDefiniteOperatorException { checkParameters(a, m, b, x0); final IterationManager manager = getIterationManager(); // Initialization of default stopping criterion manager.resetIterationCount(); final double rmax = delta * b.getNorm(); final RealVector bro = RealVector.unmodifiableRealVector(b); // Initialization phase counts as one iteration. manager.incrementIterationCount(); // p and x are constructed as copies of x0, since presumably, the type // of x is optimized for the calculation of the matrix-vector product // A.x. final RealVector x = x0; final RealVector xro = RealVector.unmodifiableRealVector(x); final RealVector p = x.copy(); RealVector q = a.operate(p); final RealVector r = b.combine(1, -1, q); final RealVector rro = RealVector.unmodifiableRealVector(r); double rnorm = r.getNorm(); RealVector z; if (m == null) { z = r; } else { z = null; } IterativeLinearSolverEvent evt; evt = new DefaultIterativeLinearSolverEvent(this, manager.getIterations(), xro, bro, rro, rnorm); manager.fireInitializationEvent(evt); if (rnorm <= rmax) { manager.fireTerminationEvent(evt); return x; } double rhoPrev = 0.; while (true) { manager.incrementIterationCount(); evt = new DefaultIterativeLinearSolverEvent(this, manager.getIterations(), xro, bro, rro, rnorm); manager.fireIterationStartedEvent(evt); if (m != null) { z = m.operate(r); } final double rhoNext = r.dotProduct(z); if (check && (rhoNext <= 0.)) { final NonPositiveDefiniteOperatorException e; e = new NonPositiveDefiniteOperatorException(); final ExceptionContext context = e.getContext(); context.setValue(OPERATOR, m); context.setValue(VECTOR, r); throw e; } if (manager.getIterations() == 2) { p.setSubVector(0, z); } else { p.combineToSelf(rhoNext / rhoPrev, 1., z); } q = a.operate(p); final double pq = p.dotProduct(q); if (check && (pq <= 0.)) { final NonPositiveDefiniteOperatorException e; e = new NonPositiveDefiniteOperatorException(); final ExceptionContext context = e.getContext(); context.setValue(OPERATOR, a); context.setValue(VECTOR, p); throw e; } final double alpha = rhoNext / pq; x.combineToSelf(1., alpha, p); r.combineToSelf(1., -alpha, q); rhoPrev = rhoNext; rnorm = r.getNorm(); evt = new DefaultIterativeLinearSolverEvent(this, manager.getIterations(), xro, bro, rro, rnorm); manager.fireIterationPerformedEvent(evt); if (rnorm <= rmax) { manager.fireTerminationEvent(evt); return x; } } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy