All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.linear.SchurTransformer Maven / Gradle / Ivy

There is a newer version: 23.0.6
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.linear;

import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.Precision;

/**
 * Class transforming a general real matrix to Schur form.
 * 

A m × m matrix A can be written as the product of three matrices: A = P * × T × PT with P an orthogonal matrix and T an quasi-triangular * matrix. Both P and T are m × m matrices.

*

Transformation to Schur form is often not a goal by itself, but it is an * intermediate step in more general decomposition algorithms like * {@link EigenDecomposition eigen decomposition}. This class is therefore * intended for internal use by the library and is not public. As a consequence * of this explicitly limited scope, many methods directly returns references to * internal arrays, not copies.

*

This class is based on the method hqr2 in class EigenvalueDecomposition * from the JAMA library.

* * @see Schur Decomposition - MathWorld * @see Schur Decomposition - Wikipedia * @see Householder Transformations * @version $Id: SchurTransformer.java 1389129 2012-09-23 19:34:02Z tn $ * @since 3.1 */ class SchurTransformer { /** Maximum allowed iterations for convergence of the transformation. */ private static final int MAX_ITERATIONS = 100; /** P matrix. */ private final double matrixP[][]; /** T matrix. */ private final double matrixT[][]; /** Cached value of P. */ private RealMatrix cachedP; /** Cached value of T. */ private RealMatrix cachedT; /** Cached value of PT. */ private RealMatrix cachedPt; /** Epsilon criteria taken from JAMA code (originally was 2^-52). */ private final double epsilon = Precision.EPSILON; /** * Build the transformation to Schur form of a general real matrix. * * @param matrix matrix to transform * @throws NonSquareMatrixException if the matrix is not square */ public SchurTransformer(final RealMatrix matrix) { if (!matrix.isSquare()) { throw new NonSquareMatrixException(matrix.getRowDimension(), matrix.getColumnDimension()); } HessenbergTransformer transformer = new HessenbergTransformer(matrix); matrixT = transformer.getH().getData(); matrixP = transformer.getP().getData(); cachedT = null; cachedP = null; cachedPt = null; // transform matrix transform(); } /** * Returns the matrix P of the transform. *

P is an orthogonal matrix, i.e. its inverse is also its transpose.

* * @return the P matrix */ public RealMatrix getP() { if (cachedP == null) { cachedP = MatrixUtils.createRealMatrix(matrixP); } return cachedP; } /** * Returns the transpose of the matrix P of the transform. *

P is an orthogonal matrix, i.e. its inverse is also its transpose.

* * @return the transpose of the P matrix */ public RealMatrix getPT() { if (cachedPt == null) { cachedPt = getP().transpose(); } // return the cached matrix return cachedPt; } /** * Returns the quasi-triangular Schur matrix T of the transform. * * @return the T matrix */ public RealMatrix getT() { if (cachedT == null) { cachedT = MatrixUtils.createRealMatrix(matrixT); } // return the cached matrix return cachedT; } /** * Transform original matrix to Schur form. * @throws MaxCountExceededException if the transformation does not converge */ private void transform() { final int n = matrixT.length; // compute matrix norm final double norm = getNorm(); // shift information final ShiftInfo shift = new ShiftInfo(); // Outer loop over eigenvalue index int iteration = 0; int iu = n - 1; while (iu >= 0) { // Look for single small sub-diagonal element final int il = findSmallSubDiagonalElement(iu, norm); // Check for convergence if (il == iu) { // One root found matrixT[iu][iu] = matrixT[iu][iu] + shift.exShift; iu--; iteration = 0; } else if (il == iu - 1) { // Two roots found double p = (matrixT[iu - 1][iu - 1] - matrixT[iu][iu]) / 2.0; double q = p * p + matrixT[iu][iu - 1] * matrixT[iu - 1][iu]; matrixT[iu][iu] += shift.exShift; matrixT[iu - 1][iu - 1] += shift.exShift; if (q >= 0) { double z = FastMath.sqrt(FastMath.abs(q)); if (p >= 0) { z = p + z; } else { z = p - z; } final double x = matrixT[iu][iu - 1]; final double s = FastMath.abs(x) + FastMath.abs(z); p = x / s; q = z / s; final double r = FastMath.sqrt(p * p + q * q); p = p / r; q = q / r; // Row modification for (int j = iu - 1; j < n; j++) { z = matrixT[iu - 1][j]; matrixT[iu - 1][j] = q * z + p * matrixT[iu][j]; matrixT[iu][j] = q * matrixT[iu][j] - p * z; } // Column modification for (int i = 0; i <= iu; i++) { z = matrixT[i][iu - 1]; matrixT[i][iu - 1] = q * z + p * matrixT[i][iu]; matrixT[i][iu] = q * matrixT[i][iu] - p * z; } // Accumulate transformations for (int i = 0; i <= n - 1; i++) { z = matrixP[i][iu - 1]; matrixP[i][iu - 1] = q * z + p * matrixP[i][iu]; matrixP[i][iu] = q * matrixP[i][iu] - p * z; } } iu -= 2; iteration = 0; } else { // No convergence yet computeShift(il, iu, iteration, shift); // stop transformation after too many iterations if (++iteration > MAX_ITERATIONS) { throw new MaxCountExceededException(LocalizedFormats.CONVERGENCE_FAILED, MAX_ITERATIONS); } // the initial houseHolder vector for the QR step final double[] hVec = new double[3]; final int im = initQRStep(il, iu, shift, hVec); performDoubleQRStep(il, im, iu, shift, hVec); } } } /** * Computes the L1 norm of the (quasi-)triangular matrix T. * * @return the L1 norm of matrix T */ private double getNorm() { double norm = 0.0; for (int i = 0; i < matrixT.length; i++) { // as matrix T is (quasi-)triangular, also take the sub-diagonal element into account for (int j = FastMath.max(i - 1, 0); j < matrixT.length; j++) { norm += FastMath.abs(matrixT[i][j]); } } return norm; } /** * Find the first small sub-diagonal element and returns its index. * * @param startIdx the starting index for the search * @param norm the L1 norm of the matrix * @return the index of the first small sub-diagonal element */ private int findSmallSubDiagonalElement(final int startIdx, final double norm) { int l = startIdx; while (l > 0) { double s = FastMath.abs(matrixT[l - 1][l - 1]) + FastMath.abs(matrixT[l][l]); if (s == 0.0) { s = norm; } if (FastMath.abs(matrixT[l][l - 1]) < epsilon * s) { break; } l--; } return l; } /** * Compute the shift for the current iteration. * * @param l the index of the small sub-diagonal element * @param idx the current eigenvalue index * @param iteration the current iteration * @param shift holder for shift information */ private void computeShift(final int l, final int idx, final int iteration, final ShiftInfo shift) { // Form shift shift.x = matrixT[idx][idx]; shift.y = shift.w = 0.0; if (l < idx) { shift.y = matrixT[idx - 1][idx - 1]; shift.w = matrixT[idx][idx - 1] * matrixT[idx - 1][idx]; } // Wilkinson's original ad hoc shift if (iteration == 10) { shift.exShift += shift.x; for (int i = 0; i <= idx; i++) { matrixT[i][i] -= shift.x; } final double s = FastMath.abs(matrixT[idx][idx - 1]) + FastMath.abs(matrixT[idx - 1][idx - 2]); shift.x = 0.75 * s; shift.y = 0.75 * s; shift.w = -0.4375 * s * s; } // MATLAB's new ad hoc shift if (iteration == 30) { double s = (shift.y - shift.x) / 2.0; s = s * s + shift.w; if (s > 0.0) { s = FastMath.sqrt(s); if (shift.y < shift.x) { s = -s; } s = shift.x - shift.w / ((shift.y - shift.x) / 2.0 + s); for (int i = 0; i <= idx; i++) { matrixT[i][i] -= s; } shift.exShift += s; shift.x = shift.y = shift.w = 0.964; } } } /** * Initialize the householder vectors for the QR step. * * @param il the index of the small sub-diagonal element * @param iu the current eigenvalue index * @param shift shift information holder * @param hVec the initial houseHolder vector * @return the start index for the QR step */ private int initQRStep(int il, final int iu, final ShiftInfo shift, double[] hVec) { // Look for two consecutive small sub-diagonal elements int im = iu - 2; while (im >= il) { final double z = matrixT[im][im]; final double r = shift.x - z; double s = shift.y - z; hVec[0] = (r * s - shift.w) / matrixT[im + 1][im] + matrixT[im][im + 1]; hVec[1] = matrixT[im + 1][im + 1] - z - r - s; hVec[2] = matrixT[im + 2][im + 1]; if (im == il) { break; } final double lhs = FastMath.abs(matrixT[im][im - 1]) * (FastMath.abs(hVec[1]) + FastMath.abs(hVec[2])); final double rhs = FastMath.abs(hVec[0]) * (FastMath.abs(matrixT[im - 1][im - 1]) + FastMath.abs(z) + FastMath.abs(matrixT[im + 1][im + 1])); if (lhs < epsilon * rhs) { break; } im--; } return im; } /** * Perform a double QR step involving rows l:idx and columns m:n * * @param il the index of the small sub-diagonal element * @param im the start index for the QR step * @param iu the current eigenvalue index * @param shift shift information holder * @param hVec the initial houseHolder vector */ private void performDoubleQRStep(final int il, final int im, final int iu, final ShiftInfo shift, final double[] hVec) { final int n = matrixT.length; double p = hVec[0]; double q = hVec[1]; double r = hVec[2]; for (int k = im; k <= iu - 1; k++) { boolean notlast = k != (iu - 1); if (k != im) { p = matrixT[k][k - 1]; q = matrixT[k + 1][k - 1]; r = notlast ? matrixT[k + 2][k - 1] : 0.0; shift.x = FastMath.abs(p) + FastMath.abs(q) + FastMath.abs(r); if (!Precision.equals(shift.x, 0.0, epsilon)) { p = p / shift.x; q = q / shift.x; r = r / shift.x; } } if (shift.x == 0.0) { break; } double s = FastMath.sqrt(p * p + q * q + r * r); if (p < 0.0) { s = -s; } if (s != 0.0) { if (k != im) { matrixT[k][k - 1] = -s * shift.x; } else if (il != im) { matrixT[k][k - 1] = -matrixT[k][k - 1]; } p = p + s; shift.x = p / s; shift.y = q / s; double z = r / s; q = q / p; r = r / p; // Row modification for (int j = k; j < n; j++) { p = matrixT[k][j] + q * matrixT[k + 1][j]; if (notlast) { p = p + r * matrixT[k + 2][j]; matrixT[k + 2][j] = matrixT[k + 2][j] - p * z; } matrixT[k][j] = matrixT[k][j] - p * shift.x; matrixT[k + 1][j] = matrixT[k + 1][j] - p * shift.y; } // Column modification for (int i = 0; i <= FastMath.min(iu, k + 3); i++) { p = shift.x * matrixT[i][k] + shift.y * matrixT[i][k + 1]; if (notlast) { p = p + z * matrixT[i][k + 2]; matrixT[i][k + 2] = matrixT[i][k + 2] - p * r; } matrixT[i][k] = matrixT[i][k] - p; matrixT[i][k + 1] = matrixT[i][k + 1] - p * q; } // Accumulate transformations final int high = matrixT.length - 1; for (int i = 0; i <= high; i++) { p = shift.x * matrixP[i][k] + shift.y * matrixP[i][k + 1]; if (notlast) { p = p + z * matrixP[i][k + 2]; matrixP[i][k + 2] = matrixP[i][k + 2] - p * r; } matrixP[i][k] = matrixP[i][k] - p; matrixP[i][k + 1] = matrixP[i][k + 1] - p * q; } } // (s != 0) } // k loop // clean up pollution due to round-off errors for (int i = im + 2; i <= iu; i++) { matrixT[i][i-2] = 0.0; if (i > im + 2) { matrixT[i][i-3] = 0.0; } } } /** * Internal data structure holding the current shift information. * Contains variable names as present in the original JAMA code. */ private static class ShiftInfo { // CHECKSTYLE: stop all /** x shift info */ double x; /** y shift info */ double y; /** w shift info */ double w; /** Indicates an exceptional shift. */ double exShift; // CHECKSTYLE: resume all } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy