All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.optim.linear.SimplexSolver Maven / Gradle / Ivy

There is a newer version: 23.0.6
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.optim.linear;

import java.util.ArrayList;
import java.util.List;
import org.apache.commons.math3.exception.TooManyIterationsException;
import org.apache.commons.math3.optim.PointValuePair;
import org.apache.commons.math3.util.Precision;

/**
 * Solves a linear problem using the "Two-Phase Simplex" method.
 * 

* Note: Depending on the problem definition, the default convergence criteria * may be too strict, resulting in {@link NoFeasibleSolutionException} or * {@link TooManyIterationsException}. In such a case it is advised to adjust these * criteria with more appropriate values, e.g. relaxing the epsilon value. *

* Default convergence criteria: *

    *
  • Algorithm convergence: 1e-6
  • *
  • Floating-point comparisons: 10 ulp
  • *
  • Cut-Off value: 1e-12
  • *
*

* The cut-off value has been introduced to zero out very small numbers in the Simplex tableau, * as these may lead to numerical instabilities due to the nature of the Simplex algorithm * (the pivot element is used as a denominator). If the problem definition is very tight, the * default cut-off value may be too small, thus it is advised to increase it to a larger value, * in accordance with the chosen epsilon. *

* It may also be counter-productive to provide a too large value for {@link * org.apache.commons.math3.optim.MaxIter MaxIter} as parameter in the call of {@link * #optimize(org.apache.commons.math3.optim.OptimizationData...) optimize(OptimizationData...)}, * as the {@link SimplexSolver} will use different strategies depending on the current iteration * count. After half of the allowed max iterations has already been reached, the strategy to select * pivot rows will change in order to break possible cycles due to degenerate problems. * * @version $Id: SimplexSolver.java 1462503 2013-03-29 15:48:27Z luc $ * @since 2.0 */ public class SimplexSolver extends LinearOptimizer { /** Default amount of error to accept in floating point comparisons (as ulps). */ static final int DEFAULT_ULPS = 10; /** Default cut-off value. */ static final double DEFAULT_CUT_OFF = 1e-12; /** Default amount of error to accept for algorithm convergence. */ private static final double DEFAULT_EPSILON = 1.0e-6; /** Amount of error to accept for algorithm convergence. */ private final double epsilon; /** Amount of error to accept in floating point comparisons (as ulps). */ private final int maxUlps; /** * Cut-off value for entries in the tableau: values smaller than the cut-off * are treated as zero to improve numerical stability. */ private final double cutOff; /** * Builds a simplex solver with default settings. */ public SimplexSolver() { this(DEFAULT_EPSILON, DEFAULT_ULPS, DEFAULT_CUT_OFF); } /** * Builds a simplex solver with a specified accepted amount of error. * * @param epsilon Amount of error to accept for algorithm convergence. */ public SimplexSolver(final double epsilon) { this(epsilon, DEFAULT_ULPS, DEFAULT_CUT_OFF); } /** * Builds a simplex solver with a specified accepted amount of error. * * @param epsilon Amount of error to accept for algorithm convergence. * @param maxUlps Amount of error to accept in floating point comparisons. */ public SimplexSolver(final double epsilon, final int maxUlps) { this(epsilon, maxUlps, DEFAULT_CUT_OFF); } /** * Builds a simplex solver with a specified accepted amount of error. * * @param epsilon Amount of error to accept for algorithm convergence. * @param maxUlps Amount of error to accept in floating point comparisons. * @param cutOff Values smaller than the cutOff are treated as zero. */ public SimplexSolver(final double epsilon, final int maxUlps, final double cutOff) { this.epsilon = epsilon; this.maxUlps = maxUlps; this.cutOff = cutOff; } /** * Returns the column with the most negative coefficient in the objective function row. * * @param tableau Simple tableau for the problem. * @return the column with the most negative coefficient. */ private Integer getPivotColumn(SimplexTableau tableau) { double minValue = 0; Integer minPos = null; for (int i = tableau.getNumObjectiveFunctions(); i < tableau.getWidth() - 1; i++) { final double entry = tableau.getEntry(0, i); // check if the entry is strictly smaller than the current minimum // do not use a ulp/epsilon check if (entry < minValue) { minValue = entry; minPos = i; } } return minPos; } /** * Returns the row with the minimum ratio as given by the minimum ratio test (MRT). * * @param tableau Simple tableau for the problem. * @param col Column to test the ratio of (see {@link #getPivotColumn(SimplexTableau)}). * @return the row with the minimum ratio. */ private Integer getPivotRow(SimplexTableau tableau, final int col) { // create a list of all the rows that tie for the lowest score in the minimum ratio test List minRatioPositions = new ArrayList(); double minRatio = Double.MAX_VALUE; for (int i = tableau.getNumObjectiveFunctions(); i < tableau.getHeight(); i++) { final double rhs = tableau.getEntry(i, tableau.getWidth() - 1); final double entry = tableau.getEntry(i, col); if (Precision.compareTo(entry, 0d, maxUlps) > 0) { final double ratio = rhs / entry; // check if the entry is strictly equal to the current min ratio // do not use a ulp/epsilon check final int cmp = Double.compare(ratio, minRatio); if (cmp == 0) { minRatioPositions.add(i); } else if (cmp < 0) { minRatio = ratio; minRatioPositions = new ArrayList(); minRatioPositions.add(i); } } } if (minRatioPositions.size() == 0) { return null; } else if (minRatioPositions.size() > 1) { // there's a degeneracy as indicated by a tie in the minimum ratio test // 1. check if there's an artificial variable that can be forced out of the basis if (tableau.getNumArtificialVariables() > 0) { for (Integer row : minRatioPositions) { for (int i = 0; i < tableau.getNumArtificialVariables(); i++) { int column = i + tableau.getArtificialVariableOffset(); final double entry = tableau.getEntry(row, column); if (Precision.equals(entry, 1d, maxUlps) && row.equals(tableau.getBasicRow(column))) { return row; } } } } // 2. apply Bland's rule to prevent cycling: // take the row for which the corresponding basic variable has the smallest index // // see http://www.stanford.edu/class/msande310/blandrule.pdf // see http://en.wikipedia.org/wiki/Bland%27s_rule (not equivalent to the above paper) // // Additional heuristic: if we did not get a solution after half of maxIterations // revert to the simple case of just returning the top-most row // This heuristic is based on empirical data gathered while investigating MATH-828. if (getEvaluations() < getMaxEvaluations() / 2) { Integer minRow = null; int minIndex = tableau.getWidth(); final int varStart = tableau.getNumObjectiveFunctions(); final int varEnd = tableau.getWidth() - 1; for (Integer row : minRatioPositions) { for (int i = varStart; i < varEnd && !row.equals(minRow); i++) { final Integer basicRow = tableau.getBasicRow(i); if (basicRow != null && basicRow.equals(row) && i < minIndex) { minIndex = i; minRow = row; } } } return minRow; } } return minRatioPositions.get(0); } /** * Runs one iteration of the Simplex method on the given model. * * @param tableau Simple tableau for the problem. * @throws TooManyIterationsException if the allowed number of iterations has been exhausted. * @throws UnboundedSolutionException if the model is found not to have a bounded solution. */ protected void doIteration(final SimplexTableau tableau) throws TooManyIterationsException, UnboundedSolutionException { incrementIterationCount(); Integer pivotCol = getPivotColumn(tableau); Integer pivotRow = getPivotRow(tableau, pivotCol); if (pivotRow == null) { throw new UnboundedSolutionException(); } // set the pivot element to 1 double pivotVal = tableau.getEntry(pivotRow, pivotCol); tableau.divideRow(pivotRow, pivotVal); // set the rest of the pivot column to 0 for (int i = 0; i < tableau.getHeight(); i++) { if (i != pivotRow) { final double multiplier = tableau.getEntry(i, pivotCol); tableau.subtractRow(i, pivotRow, multiplier); } } } /** * Solves Phase 1 of the Simplex method. * * @param tableau Simple tableau for the problem. * @throws TooManyIterationsException if the allowed number of iterations has been exhausted. * @throws UnboundedSolutionException if the model is found not to have a bounded solution. * @throws NoFeasibleSolutionException if there is no feasible solution? */ protected void solvePhase1(final SimplexTableau tableau) throws TooManyIterationsException, UnboundedSolutionException, NoFeasibleSolutionException { // make sure we're in Phase 1 if (tableau.getNumArtificialVariables() == 0) { return; } while (!tableau.isOptimal()) { doIteration(tableau); } // if W is not zero then we have no feasible solution if (!Precision.equals(tableau.getEntry(0, tableau.getRhsOffset()), 0d, epsilon)) { throw new NoFeasibleSolutionException(); } } /** {@inheritDoc} */ @Override public PointValuePair doOptimize() throws TooManyIterationsException, UnboundedSolutionException, NoFeasibleSolutionException { final SimplexTableau tableau = new SimplexTableau(getFunction(), getConstraints(), getGoalType(), isRestrictedToNonNegative(), epsilon, maxUlps, cutOff); solvePhase1(tableau); tableau.dropPhase1Objective(); while (!tableau.isOptimal()) { doIteration(tableau); } return tableau.getSolution(); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy