All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.optim.linear.SimplexTableau Maven / Gradle / Ivy

There is a newer version: 23.0.6
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.optim.linear;

import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import java.util.TreeSet;

import org.apache.commons.math3.linear.Array2DRowRealMatrix;
import org.apache.commons.math3.linear.MatrixUtils;
import org.apache.commons.math3.linear.RealMatrix;
import org.apache.commons.math3.linear.RealVector;
import org.apache.commons.math3.optim.nonlinear.scalar.GoalType;
import org.apache.commons.math3.optim.PointValuePair;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.Precision;

/**
 * A tableau for use in the Simplex method.
 *
 * 

* Example: *

 *   W |  Z |  x1 |  x2 |  x- | s1 |  s2 |  a1 |  RHS
 * ---------------------------------------------------
 *  -1    0    0     0     0     0     0     1     0   <= phase 1 objective
 *   0    1   -15   -10    0     0     0     0     0   <= phase 2 objective
 *   0    0    1     0     0     1     0     0     2   <= constraint 1
 *   0    0    0     1     0     0     1     0     3   <= constraint 2
 *   0    0    1     1     0     0     0     1     4   <= constraint 3
 * 
* W: Phase 1 objective function
* Z: Phase 2 objective function
* x1 & x2: Decision variables
* x-: Extra decision variable to allow for negative values
* s1 & s2: Slack/Surplus variables
* a1: Artificial variable
* RHS: Right hand side
*

* @version $Id: SimplexTableau.java 1435810 2013-01-20 10:04:45Z tn $ * @since 2.0 */ class SimplexTableau implements Serializable { /** Column label for negative vars. */ private static final String NEGATIVE_VAR_COLUMN_LABEL = "x-"; /** Serializable version identifier. */ private static final long serialVersionUID = -1369660067587938365L; /** Linear objective function. */ private final LinearObjectiveFunction f; /** Linear constraints. */ private final List constraints; /** Whether to restrict the variables to non-negative values. */ private final boolean restrictToNonNegative; /** The variables each column represents */ private final List columnLabels = new ArrayList(); /** Simple tableau. */ private transient RealMatrix tableau; /** Number of decision variables. */ private final int numDecisionVariables; /** Number of slack variables. */ private final int numSlackVariables; /** Number of artificial variables. */ private int numArtificialVariables; /** Amount of error to accept when checking for optimality. */ private final double epsilon; /** Amount of error to accept in floating point comparisons. */ private final int maxUlps; /** Cut-off value for entries in the tableau. */ private final double cutOff; /** * Builds a tableau for a linear problem. * * @param f Linear objective function. * @param constraints Linear constraints. * @param goalType Optimization goal: either {@link GoalType#MAXIMIZE} * or {@link GoalType#MINIMIZE}. * @param restrictToNonNegative Whether to restrict the variables to non-negative values. * @param epsilon Amount of error to accept when checking for optimality. */ SimplexTableau(final LinearObjectiveFunction f, final Collection constraints, final GoalType goalType, final boolean restrictToNonNegative, final double epsilon) { this(f, constraints, goalType, restrictToNonNegative, epsilon, SimplexSolver.DEFAULT_ULPS, SimplexSolver.DEFAULT_CUT_OFF); } /** * Build a tableau for a linear problem. * @param f linear objective function * @param constraints linear constraints * @param goalType type of optimization goal: either {@link GoalType#MAXIMIZE} or {@link GoalType#MINIMIZE} * @param restrictToNonNegative whether to restrict the variables to non-negative values * @param epsilon amount of error to accept when checking for optimality * @param maxUlps amount of error to accept in floating point comparisons */ SimplexTableau(final LinearObjectiveFunction f, final Collection constraints, final GoalType goalType, final boolean restrictToNonNegative, final double epsilon, final int maxUlps) { this(f, constraints, goalType, restrictToNonNegative, epsilon, maxUlps, SimplexSolver.DEFAULT_CUT_OFF); } /** * Build a tableau for a linear problem. * @param f linear objective function * @param constraints linear constraints * @param goalType type of optimization goal: either {@link GoalType#MAXIMIZE} or {@link GoalType#MINIMIZE} * @param restrictToNonNegative whether to restrict the variables to non-negative values * @param epsilon amount of error to accept when checking for optimality * @param maxUlps amount of error to accept in floating point comparisons * @param cutOff the cut-off value for tableau entries */ SimplexTableau(final LinearObjectiveFunction f, final Collection constraints, final GoalType goalType, final boolean restrictToNonNegative, final double epsilon, final int maxUlps, final double cutOff) { this.f = f; this.constraints = normalizeConstraints(constraints); this.restrictToNonNegative = restrictToNonNegative; this.epsilon = epsilon; this.maxUlps = maxUlps; this.cutOff = cutOff; this.numDecisionVariables = f.getCoefficients().getDimension() + (restrictToNonNegative ? 0 : 1); this.numSlackVariables = getConstraintTypeCounts(Relationship.LEQ) + getConstraintTypeCounts(Relationship.GEQ); this.numArtificialVariables = getConstraintTypeCounts(Relationship.EQ) + getConstraintTypeCounts(Relationship.GEQ); this.tableau = createTableau(goalType == GoalType.MAXIMIZE); initializeColumnLabels(); } /** * Initialize the labels for the columns. */ protected void initializeColumnLabels() { if (getNumObjectiveFunctions() == 2) { columnLabels.add("W"); } columnLabels.add("Z"); for (int i = 0; i < getOriginalNumDecisionVariables(); i++) { columnLabels.add("x" + i); } if (!restrictToNonNegative) { columnLabels.add(NEGATIVE_VAR_COLUMN_LABEL); } for (int i = 0; i < getNumSlackVariables(); i++) { columnLabels.add("s" + i); } for (int i = 0; i < getNumArtificialVariables(); i++) { columnLabels.add("a" + i); } columnLabels.add("RHS"); } /** * Create the tableau by itself. * @param maximize if true, goal is to maximize the objective function * @return created tableau */ protected RealMatrix createTableau(final boolean maximize) { // create a matrix of the correct size int width = numDecisionVariables + numSlackVariables + numArtificialVariables + getNumObjectiveFunctions() + 1; // + 1 is for RHS int height = constraints.size() + getNumObjectiveFunctions(); Array2DRowRealMatrix matrix = new Array2DRowRealMatrix(height, width); // initialize the objective function rows if (getNumObjectiveFunctions() == 2) { matrix.setEntry(0, 0, -1); } int zIndex = (getNumObjectiveFunctions() == 1) ? 0 : 1; matrix.setEntry(zIndex, zIndex, maximize ? 1 : -1); RealVector objectiveCoefficients = maximize ? f.getCoefficients().mapMultiply(-1) : f.getCoefficients(); copyArray(objectiveCoefficients.toArray(), matrix.getDataRef()[zIndex]); matrix.setEntry(zIndex, width - 1, maximize ? f.getConstantTerm() : -1 * f.getConstantTerm()); if (!restrictToNonNegative) { matrix.setEntry(zIndex, getSlackVariableOffset() - 1, getInvertedCoefficientSum(objectiveCoefficients)); } // initialize the constraint rows int slackVar = 0; int artificialVar = 0; for (int i = 0; i < constraints.size(); i++) { LinearConstraint constraint = constraints.get(i); int row = getNumObjectiveFunctions() + i; // decision variable coefficients copyArray(constraint.getCoefficients().toArray(), matrix.getDataRef()[row]); // x- if (!restrictToNonNegative) { matrix.setEntry(row, getSlackVariableOffset() - 1, getInvertedCoefficientSum(constraint.getCoefficients())); } // RHS matrix.setEntry(row, width - 1, constraint.getValue()); // slack variables if (constraint.getRelationship() == Relationship.LEQ) { matrix.setEntry(row, getSlackVariableOffset() + slackVar++, 1); // slack } else if (constraint.getRelationship() == Relationship.GEQ) { matrix.setEntry(row, getSlackVariableOffset() + slackVar++, -1); // excess } // artificial variables if ((constraint.getRelationship() == Relationship.EQ) || (constraint.getRelationship() == Relationship.GEQ)) { matrix.setEntry(0, getArtificialVariableOffset() + artificialVar, 1); matrix.setEntry(row, getArtificialVariableOffset() + artificialVar++, 1); matrix.setRowVector(0, matrix.getRowVector(0).subtract(matrix.getRowVector(row))); } } return matrix; } /** * Get new versions of the constraints which have positive right hand sides. * @param originalConstraints original (not normalized) constraints * @return new versions of the constraints */ public List normalizeConstraints(Collection originalConstraints) { List normalized = new ArrayList(); for (LinearConstraint constraint : originalConstraints) { normalized.add(normalize(constraint)); } return normalized; } /** * Get a new equation equivalent to this one with a positive right hand side. * @param constraint reference constraint * @return new equation */ private LinearConstraint normalize(final LinearConstraint constraint) { if (constraint.getValue() < 0) { return new LinearConstraint(constraint.getCoefficients().mapMultiply(-1), constraint.getRelationship().oppositeRelationship(), -1 * constraint.getValue()); } return new LinearConstraint(constraint.getCoefficients(), constraint.getRelationship(), constraint.getValue()); } /** * Get the number of objective functions in this tableau. * @return 2 for Phase 1. 1 for Phase 2. */ protected final int getNumObjectiveFunctions() { return this.numArtificialVariables > 0 ? 2 : 1; } /** * Get a count of constraints corresponding to a specified relationship. * @param relationship relationship to count * @return number of constraint with the specified relationship */ private int getConstraintTypeCounts(final Relationship relationship) { int count = 0; for (final LinearConstraint constraint : constraints) { if (constraint.getRelationship() == relationship) { ++count; } } return count; } /** * Get the -1 times the sum of all coefficients in the given array. * @param coefficients coefficients to sum * @return the -1 times the sum of all coefficients in the given array. */ protected static double getInvertedCoefficientSum(final RealVector coefficients) { double sum = 0; for (double coefficient : coefficients.toArray()) { sum -= coefficient; } return sum; } /** * Checks whether the given column is basic. * @param col index of the column to check * @return the row that the variable is basic in. null if the column is not basic */ protected Integer getBasicRow(final int col) { Integer row = null; for (int i = 0; i < getHeight(); i++) { final double entry = getEntry(i, col); if (Precision.equals(entry, 1d, maxUlps) && (row == null)) { row = i; } else if (!Precision.equals(entry, 0d, maxUlps)) { return null; } } return row; } /** * Removes the phase 1 objective function, positive cost non-artificial variables, * and the non-basic artificial variables from this tableau. */ protected void dropPhase1Objective() { if (getNumObjectiveFunctions() == 1) { return; } Set columnsToDrop = new TreeSet(); columnsToDrop.add(0); // positive cost non-artificial variables for (int i = getNumObjectiveFunctions(); i < getArtificialVariableOffset(); i++) { final double entry = tableau.getEntry(0, i); if (Precision.compareTo(entry, 0d, epsilon) > 0) { columnsToDrop.add(i); } } // non-basic artificial variables for (int i = 0; i < getNumArtificialVariables(); i++) { int col = i + getArtificialVariableOffset(); if (getBasicRow(col) == null) { columnsToDrop.add(col); } } double[][] matrix = new double[getHeight() - 1][getWidth() - columnsToDrop.size()]; for (int i = 1; i < getHeight(); i++) { int col = 0; for (int j = 0; j < getWidth(); j++) { if (!columnsToDrop.contains(j)) { matrix[i - 1][col++] = tableau.getEntry(i, j); } } } // remove the columns in reverse order so the indices are correct Integer[] drop = columnsToDrop.toArray(new Integer[columnsToDrop.size()]); for (int i = drop.length - 1; i >= 0; i--) { columnLabels.remove((int) drop[i]); } this.tableau = new Array2DRowRealMatrix(matrix); this.numArtificialVariables = 0; } /** * @param src the source array * @param dest the destination array */ private void copyArray(final double[] src, final double[] dest) { System.arraycopy(src, 0, dest, getNumObjectiveFunctions(), src.length); } /** * Returns whether the problem is at an optimal state. * @return whether the model has been solved */ boolean isOptimal() { for (int i = getNumObjectiveFunctions(); i < getWidth() - 1; i++) { final double entry = tableau.getEntry(0, i); if (Precision.compareTo(entry, 0d, epsilon) < 0) { return false; } } return true; } /** * Get the current solution. * @return current solution */ protected PointValuePair getSolution() { int negativeVarColumn = columnLabels.indexOf(NEGATIVE_VAR_COLUMN_LABEL); Integer negativeVarBasicRow = negativeVarColumn > 0 ? getBasicRow(negativeVarColumn) : null; double mostNegative = negativeVarBasicRow == null ? 0 : getEntry(negativeVarBasicRow, getRhsOffset()); Set basicRows = new HashSet(); double[] coefficients = new double[getOriginalNumDecisionVariables()]; for (int i = 0; i < coefficients.length; i++) { int colIndex = columnLabels.indexOf("x" + i); if (colIndex < 0) { coefficients[i] = 0; continue; } Integer basicRow = getBasicRow(colIndex); if (basicRow != null && basicRow == 0) { // if the basic row is found to be the objective function row // set the coefficient to 0 -> this case handles unconstrained // variables that are still part of the objective function coefficients[i] = 0; } else if (basicRows.contains(basicRow)) { // if multiple variables can take a given value // then we choose the first and set the rest equal to 0 coefficients[i] = 0 - (restrictToNonNegative ? 0 : mostNegative); } else { basicRows.add(basicRow); coefficients[i] = (basicRow == null ? 0 : getEntry(basicRow, getRhsOffset())) - (restrictToNonNegative ? 0 : mostNegative); } } return new PointValuePair(coefficients, f.value(coefficients)); } /** * Subtracts a multiple of one row from another. *

* After application of this operation, the following will hold: *

minuendRow = minuendRow - multiple * subtrahendRow
* * @param dividendRow index of the row * @param divisor value of the divisor */ protected void divideRow(final int dividendRow, final double divisor) { for (int j = 0; j < getWidth(); j++) { tableau.setEntry(dividendRow, j, tableau.getEntry(dividendRow, j) / divisor); } } /** * Subtracts a multiple of one row from another. *

* After application of this operation, the following will hold: *

minuendRow = minuendRow - multiple * subtrahendRow
* * @param minuendRow row index * @param subtrahendRow row index * @param multiple multiplication factor */ protected void subtractRow(final int minuendRow, final int subtrahendRow, final double multiple) { for (int i = 0; i < getWidth(); i++) { double result = tableau.getEntry(minuendRow, i) - tableau.getEntry(subtrahendRow, i) * multiple; // cut-off values smaller than the cut-off threshold, otherwise may lead to numerical instabilities if (FastMath.abs(result) < cutOff) { result = 0.0; } tableau.setEntry(minuendRow, i, result); } } /** * Get the width of the tableau. * @return width of the tableau */ protected final int getWidth() { return tableau.getColumnDimension(); } /** * Get the height of the tableau. * @return height of the tableau */ protected final int getHeight() { return tableau.getRowDimension(); } /** * Get an entry of the tableau. * @param row row index * @param column column index * @return entry at (row, column) */ protected final double getEntry(final int row, final int column) { return tableau.getEntry(row, column); } /** * Set an entry of the tableau. * @param row row index * @param column column index * @param value for the entry */ protected final void setEntry(final int row, final int column, final double value) { tableau.setEntry(row, column, value); } /** * Get the offset of the first slack variable. * @return offset of the first slack variable */ protected final int getSlackVariableOffset() { return getNumObjectiveFunctions() + numDecisionVariables; } /** * Get the offset of the first artificial variable. * @return offset of the first artificial variable */ protected final int getArtificialVariableOffset() { return getNumObjectiveFunctions() + numDecisionVariables + numSlackVariables; } /** * Get the offset of the right hand side. * @return offset of the right hand side */ protected final int getRhsOffset() { return getWidth() - 1; } /** * Get the number of decision variables. *

* If variables are not restricted to positive values, this will include 1 extra decision variable to represent * the absolute value of the most negative variable. * * @return number of decision variables * @see #getOriginalNumDecisionVariables() */ protected final int getNumDecisionVariables() { return numDecisionVariables; } /** * Get the original number of decision variables. * @return original number of decision variables * @see #getNumDecisionVariables() */ protected final int getOriginalNumDecisionVariables() { return f.getCoefficients().getDimension(); } /** * Get the number of slack variables. * @return number of slack variables */ protected final int getNumSlackVariables() { return numSlackVariables; } /** * Get the number of artificial variables. * @return number of artificial variables */ protected final int getNumArtificialVariables() { return numArtificialVariables; } /** * Get the tableau data. * @return tableau data */ protected final double[][] getData() { return tableau.getData(); } @Override public boolean equals(Object other) { if (this == other) { return true; } if (other instanceof SimplexTableau) { SimplexTableau rhs = (SimplexTableau) other; return (restrictToNonNegative == rhs.restrictToNonNegative) && (numDecisionVariables == rhs.numDecisionVariables) && (numSlackVariables == rhs.numSlackVariables) && (numArtificialVariables == rhs.numArtificialVariables) && (epsilon == rhs.epsilon) && (maxUlps == rhs.maxUlps) && f.equals(rhs.f) && constraints.equals(rhs.constraints) && tableau.equals(rhs.tableau); } return false; } @Override public int hashCode() { return Boolean.valueOf(restrictToNonNegative).hashCode() ^ numDecisionVariables ^ numSlackVariables ^ numArtificialVariables ^ Double.valueOf(epsilon).hashCode() ^ maxUlps ^ f.hashCode() ^ constraints.hashCode() ^ tableau.hashCode(); } /** * Serialize the instance. * @param oos stream where object should be written * @throws IOException if object cannot be written to stream */ private void writeObject(ObjectOutputStream oos) throws IOException { oos.defaultWriteObject(); MatrixUtils.serializeRealMatrix(tableau, oos); } /** * Deserialize the instance. * @param ois stream from which the object should be read * @throws ClassNotFoundException if a class in the stream cannot be found * @throws IOException if object cannot be read from the stream */ private void readObject(ObjectInputStream ois) throws ClassNotFoundException, IOException { ois.defaultReadObject(); MatrixUtils.deserializeRealMatrix(this, "tableau", ois); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy