All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.optimization.direct.PowellOptimizer Maven / Gradle / Ivy

There is a newer version: 23.0.6
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.optimization.direct;

import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.MathArrays;
import org.apache.commons.math3.analysis.UnivariateFunction;
import org.apache.commons.math3.analysis.MultivariateFunction;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.optimization.GoalType;
import org.apache.commons.math3.optimization.PointValuePair;
import org.apache.commons.math3.optimization.ConvergenceChecker;
import org.apache.commons.math3.optimization.MultivariateOptimizer;
import org.apache.commons.math3.optimization.univariate.BracketFinder;
import org.apache.commons.math3.optimization.univariate.BrentOptimizer;
import org.apache.commons.math3.optimization.univariate.UnivariatePointValuePair;
import org.apache.commons.math3.optimization.univariate.SimpleUnivariateValueChecker;

/**
 * Powell algorithm.
 * This code is translated and adapted from the Python version of this
 * algorithm (as implemented in module {@code optimize.py} v0.5 of
 * SciPy).
 * 
* The default stopping criterion is based on the differences of the * function value between two successive iterations. It is however possible * to define a custom convergence checker that might terminate the algorithm * earlier. *
* The internal line search optimizer is a {@link BrentOptimizer} with a * convergence checker set to {@link SimpleUnivariateValueChecker}. * * @version $Id: PowellOptimizer.java 1462503 2013-03-29 15:48:27Z luc $ * @deprecated As of 3.1 (to be removed in 4.0). * @since 2.2 */ @Deprecated public class PowellOptimizer extends BaseAbstractMultivariateOptimizer implements MultivariateOptimizer { /** * Minimum relative tolerance. */ private static final double MIN_RELATIVE_TOLERANCE = 2 * FastMath.ulp(1d); /** * Relative threshold. */ private final double relativeThreshold; /** * Absolute threshold. */ private final double absoluteThreshold; /** * Line search. */ private final LineSearch line; /** * This constructor allows to specify a user-defined convergence checker, * in addition to the parameters that control the default convergence * checking procedure. *
* The internal line search tolerances are set to the square-root of their * corresponding value in the multivariate optimizer. * * @param rel Relative threshold. * @param abs Absolute threshold. * @param checker Convergence checker. * @throws NotStrictlyPositiveException if {@code abs <= 0}. * @throws NumberIsTooSmallException if {@code rel < 2 * Math.ulp(1d)}. */ public PowellOptimizer(double rel, double abs, ConvergenceChecker checker) { this(rel, abs, FastMath.sqrt(rel), FastMath.sqrt(abs), checker); } /** * This constructor allows to specify a user-defined convergence checker, * in addition to the parameters that control the default convergence * checking procedure and the line search tolerances. * * @param rel Relative threshold for this optimizer. * @param abs Absolute threshold for this optimizer. * @param lineRel Relative threshold for the internal line search optimizer. * @param lineAbs Absolute threshold for the internal line search optimizer. * @param checker Convergence checker. * @throws NotStrictlyPositiveException if {@code abs <= 0}. * @throws NumberIsTooSmallException if {@code rel < 2 * Math.ulp(1d)}. */ public PowellOptimizer(double rel, double abs, double lineRel, double lineAbs, ConvergenceChecker checker) { super(checker); if (rel < MIN_RELATIVE_TOLERANCE) { throw new NumberIsTooSmallException(rel, MIN_RELATIVE_TOLERANCE, true); } if (abs <= 0) { throw new NotStrictlyPositiveException(abs); } relativeThreshold = rel; absoluteThreshold = abs; // Create the line search optimizer. line = new LineSearch(lineRel, lineAbs); } /** * The parameters control the default convergence checking procedure. *
* The internal line search tolerances are set to the square-root of their * corresponding value in the multivariate optimizer. * * @param rel Relative threshold. * @param abs Absolute threshold. * @throws NotStrictlyPositiveException if {@code abs <= 0}. * @throws NumberIsTooSmallException if {@code rel < 2 * Math.ulp(1d)}. */ public PowellOptimizer(double rel, double abs) { this(rel, abs, null); } /** * Builds an instance with the default convergence checking procedure. * * @param rel Relative threshold. * @param abs Absolute threshold. * @param lineRel Relative threshold for the internal line search optimizer. * @param lineAbs Absolute threshold for the internal line search optimizer. * @throws NotStrictlyPositiveException if {@code abs <= 0}. * @throws NumberIsTooSmallException if {@code rel < 2 * Math.ulp(1d)}. * @since 3.1 */ public PowellOptimizer(double rel, double abs, double lineRel, double lineAbs) { this(rel, abs, lineRel, lineAbs, null); } /** {@inheritDoc} */ @Override protected PointValuePair doOptimize() { final GoalType goal = getGoalType(); final double[] guess = getStartPoint(); final int n = guess.length; final double[][] direc = new double[n][n]; for (int i = 0; i < n; i++) { direc[i][i] = 1; } final ConvergenceChecker checker = getConvergenceChecker(); double[] x = guess; double fVal = computeObjectiveValue(x); double[] x1 = x.clone(); int iter = 0; while (true) { ++iter; double fX = fVal; double fX2 = 0; double delta = 0; int bigInd = 0; double alphaMin = 0; for (int i = 0; i < n; i++) { final double[] d = MathArrays.copyOf(direc[i]); fX2 = fVal; final UnivariatePointValuePair optimum = line.search(x, d); fVal = optimum.getValue(); alphaMin = optimum.getPoint(); final double[][] result = newPointAndDirection(x, d, alphaMin); x = result[0]; if ((fX2 - fVal) > delta) { delta = fX2 - fVal; bigInd = i; } } // Default convergence check. boolean stop = 2 * (fX - fVal) <= (relativeThreshold * (FastMath.abs(fX) + FastMath.abs(fVal)) + absoluteThreshold); final PointValuePair previous = new PointValuePair(x1, fX); final PointValuePair current = new PointValuePair(x, fVal); if (!stop && checker != null) { stop = checker.converged(iter, previous, current); } if (stop) { if (goal == GoalType.MINIMIZE) { return (fVal < fX) ? current : previous; } else { return (fVal > fX) ? current : previous; } } final double[] d = new double[n]; final double[] x2 = new double[n]; for (int i = 0; i < n; i++) { d[i] = x[i] - x1[i]; x2[i] = 2 * x[i] - x1[i]; } x1 = x.clone(); fX2 = computeObjectiveValue(x2); if (fX > fX2) { double t = 2 * (fX + fX2 - 2 * fVal); double temp = fX - fVal - delta; t *= temp * temp; temp = fX - fX2; t -= delta * temp * temp; if (t < 0.0) { final UnivariatePointValuePair optimum = line.search(x, d); fVal = optimum.getValue(); alphaMin = optimum.getPoint(); final double[][] result = newPointAndDirection(x, d, alphaMin); x = result[0]; final int lastInd = n - 1; direc[bigInd] = direc[lastInd]; direc[lastInd] = result[1]; } } } } /** * Compute a new point (in the original space) and a new direction * vector, resulting from the line search. * * @param p Point used in the line search. * @param d Direction used in the line search. * @param optimum Optimum found by the line search. * @return a 2-element array containing the new point (at index 0) and * the new direction (at index 1). */ private double[][] newPointAndDirection(double[] p, double[] d, double optimum) { final int n = p.length; final double[] nP = new double[n]; final double[] nD = new double[n]; for (int i = 0; i < n; i++) { nD[i] = d[i] * optimum; nP[i] = p[i] + nD[i]; } final double[][] result = new double[2][]; result[0] = nP; result[1] = nD; return result; } /** * Class for finding the minimum of the objective function along a given * direction. */ private class LineSearch extends BrentOptimizer { /** * Value that will pass the precondition check for {@link BrentOptimizer} * but will not pass the convergence check, so that the custom checker * will always decide when to stop the line search. */ private static final double REL_TOL_UNUSED = 1e-15; /** * Value that will pass the precondition check for {@link BrentOptimizer} * but will not pass the convergence check, so that the custom checker * will always decide when to stop the line search. */ private static final double ABS_TOL_UNUSED = Double.MIN_VALUE; /** * Automatic bracketing. */ private final BracketFinder bracket = new BracketFinder(); /** * The "BrentOptimizer" default stopping criterion uses the tolerances * to check the domain (point) values, not the function values. * We thus create a custom checker to use function values. * * @param rel Relative threshold. * @param abs Absolute threshold. */ LineSearch(double rel, double abs) { super(REL_TOL_UNUSED, ABS_TOL_UNUSED, new SimpleUnivariateValueChecker(rel, abs)); } /** * Find the minimum of the function {@code f(p + alpha * d)}. * * @param p Starting point. * @param d Search direction. * @return the optimum. * @throws org.apache.commons.math3.exception.TooManyEvaluationsException * if the number of evaluations is exceeded. */ public UnivariatePointValuePair search(final double[] p, final double[] d) { final int n = p.length; final UnivariateFunction f = new UnivariateFunction() { public double value(double alpha) { final double[] x = new double[n]; for (int i = 0; i < n; i++) { x[i] = p[i] + alpha * d[i]; } final double obj = PowellOptimizer.this.computeObjectiveValue(x); return obj; } }; final GoalType goal = PowellOptimizer.this.getGoalType(); bracket.search(f, goal, 0, 1); // Passing "MAX_VALUE" as a dummy value because it is the enclosing // class that counts the number of evaluations (and will eventually // generate the exception). return optimize(Integer.MAX_VALUE, f, goal, bracket.getLo(), bracket.getHi(), bracket.getMid()); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy