All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.stat.inference.WilcoxonSignedRankTest Maven / Gradle / Ivy

There is a newer version: 23.0.6
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.stat.inference;

import org.apache.commons.math3.distribution.NormalDistribution;
import org.apache.commons.math3.exception.ConvergenceException;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.exception.NoDataException;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.stat.ranking.NaNStrategy;
import org.apache.commons.math3.stat.ranking.NaturalRanking;
import org.apache.commons.math3.stat.ranking.TiesStrategy;
import org.apache.commons.math3.util.FastMath;

/**
 * An implementation of the Wilcoxon signed-rank test.
 *
 * @version $Id: WilcoxonSignedRankTest.java 1416643 2012-12-03 19:37:14Z tn $
 */
public class WilcoxonSignedRankTest {

    /** Ranking algorithm. */
    private NaturalRanking naturalRanking;

    /**
     * Create a test instance where NaN's are left in place and ties get
     * the average of applicable ranks. Use this unless you are very sure
     * of what you are doing.
     */
    public WilcoxonSignedRankTest() {
        naturalRanking = new NaturalRanking(NaNStrategy.FIXED,
                TiesStrategy.AVERAGE);
    }

    /**
     * Create a test instance using the given strategies for NaN's and ties.
     * Only use this if you are sure of what you are doing.
     *
     * @param nanStrategy
     *            specifies the strategy that should be used for Double.NaN's
     * @param tiesStrategy
     *            specifies the strategy that should be used for ties
     */
    public WilcoxonSignedRankTest(final NaNStrategy nanStrategy,
                                  final TiesStrategy tiesStrategy) {
        naturalRanking = new NaturalRanking(nanStrategy, tiesStrategy);
    }

    /**
     * Ensures that the provided arrays fulfills the assumptions.
     *
     * @param x first sample
     * @param y second sample
     * @throws NullArgumentException if {@code x} or {@code y} are {@code null}.
     * @throws NoDataException if {@code x} or {@code y} are zero-length.
     * @throws DimensionMismatchException if {@code x} and {@code y} do not
     * have the same length.
     */
    private void ensureDataConformance(final double[] x, final double[] y)
        throws NullArgumentException, NoDataException, DimensionMismatchException {

        if (x == null ||
            y == null) {
                throw new NullArgumentException();
        }
        if (x.length == 0 ||
            y.length == 0) {
            throw new NoDataException();
        }
        if (y.length != x.length) {
            throw new DimensionMismatchException(y.length, x.length);
        }
    }

    /**
     * Calculates y[i] - x[i] for all i
     *
     * @param x first sample
     * @param y second sample
     * @return z = y - x
     */
    private double[] calculateDifferences(final double[] x, final double[] y) {

        final double[] z = new double[x.length];

        for (int i = 0; i < x.length; ++i) {
            z[i] = y[i] - x[i];
        }

        return z;
    }

    /**
     * Calculates |z[i]| for all i
     *
     * @param z sample
     * @return |z|
     * @throws NullArgumentException if {@code z} is {@code null}
     * @throws NoDataException if {@code z} is zero-length.
     */
    private double[] calculateAbsoluteDifferences(final double[] z)
        throws NullArgumentException, NoDataException {

        if (z == null) {
            throw new NullArgumentException();
        }

        if (z.length == 0) {
            throw new NoDataException();
        }

        final double[] zAbs = new double[z.length];

        for (int i = 0; i < z.length; ++i) {
            zAbs[i] = FastMath.abs(z[i]);
        }

        return zAbs;
    }

    /**
     * Computes the 
     * Wilcoxon signed ranked statistic comparing mean for two related
     * samples or repeated measurements on a single sample.
     * 

* This statistic can be used to perform a Wilcoxon signed ranked test * evaluating the null hypothesis that the two related samples or repeated * measurements on a single sample has equal mean. *

*

* Let Xi denote the i'th individual of the first sample and * Yi the related i'th individual in the second sample. Let * Zi = Yi - Xi. *

*

* Preconditions: *

    *
  • The differences Zi must be independent.
  • *
  • Each Zi comes from a continuous population (they must be * identical) and is symmetric about a common median.
  • *
  • The values that Xi and Yi represent are * ordered, so the comparisons greater than, less than, and equal to are * meaningful.
  • *
*

* * @param x the first sample * @param y the second sample * @return wilcoxonSignedRank statistic (the larger of W+ and W-) * @throws NullArgumentException if {@code x} or {@code y} are {@code null}. * @throws NoDataException if {@code x} or {@code y} are zero-length. * @throws DimensionMismatchException if {@code x} and {@code y} do not * have the same length. */ public double wilcoxonSignedRank(final double[] x, final double[] y) throws NullArgumentException, NoDataException, DimensionMismatchException { ensureDataConformance(x, y); // throws IllegalArgumentException if x and y are not correctly // specified final double[] z = calculateDifferences(x, y); final double[] zAbs = calculateAbsoluteDifferences(z); final double[] ranks = naturalRanking.rank(zAbs); double Wplus = 0; for (int i = 0; i < z.length; ++i) { if (z[i] > 0) { Wplus += ranks[i]; } } final int N = x.length; final double Wminus = (((double) (N * (N + 1))) / 2.0) - Wplus; return FastMath.max(Wplus, Wminus); } /** * Algorithm inspired by * http://www.fon.hum.uva.nl/Service/Statistics/Signed_Rank_Algorihms.html#C * by Rob van Son, Institute of Phonetic Sciences & IFOTT, * University of Amsterdam * * @param Wmax largest Wilcoxon signed rank value * @param N number of subjects (corresponding to x.length) * @return two-sided exact p-value */ private double calculateExactPValue(final double Wmax, final int N) { // Total number of outcomes (equal to 2^N but a lot faster) final int m = 1 << N; int largerRankSums = 0; for (int i = 0; i < m; ++i) { int rankSum = 0; // Generate all possible rank sums for (int j = 0; j < N; ++j) { // (i >> j) & 1 extract i's j-th bit from the right if (((i >> j) & 1) == 1) { rankSum += j + 1; } } if (rankSum >= Wmax) { ++largerRankSums; } } /* * largerRankSums / m gives the one-sided p-value, so it's multiplied * with 2 to get the two-sided p-value */ return 2 * ((double) largerRankSums) / ((double) m); } /** * @param Wmin smallest Wilcoxon signed rank value * @param N number of subjects (corresponding to x.length) * @return two-sided asymptotic p-value */ private double calculateAsymptoticPValue(final double Wmin, final int N) { final double ES = (double) (N * (N + 1)) / 4.0; /* Same as (but saves computations): * final double VarW = ((double) (N * (N + 1) * (2*N + 1))) / 24; */ final double VarS = ES * ((double) (2 * N + 1) / 6.0); // - 0.5 is a continuity correction final double z = (Wmin - ES - 0.5) / FastMath.sqrt(VarS); // No try-catch or advertised exception because args are valid final NormalDistribution standardNormal = new NormalDistribution(0, 1); return 2*standardNormal.cumulativeProbability(z); } /** * Returns the observed significance level, or * p-value, associated with a * Wilcoxon signed ranked statistic comparing mean for two related * samples or repeated measurements on a single sample. *

* Let Xi denote the i'th individual of the first sample and * Yi the related i'th individual in the second sample. Let * Zi = Yi - Xi. *

*

* Preconditions: *

    *
  • The differences Zi must be independent.
  • *
  • Each Zi comes from a continuous population (they must be * identical) and is symmetric about a common median.
  • *
  • The values that Xi and Yi represent are * ordered, so the comparisons greater than, less than, and equal to are * meaningful.
  • *
*

* * @param x the first sample * @param y the second sample * @param exactPValue * if the exact p-value is wanted (only works for x.length <= 30, * if true and x.length > 30, this is ignored because * calculations may take too long) * @return p-value * @throws NullArgumentException if {@code x} or {@code y} are {@code null}. * @throws NoDataException if {@code x} or {@code y} are zero-length. * @throws DimensionMismatchException if {@code x} and {@code y} do not * have the same length. * @throws NumberIsTooLargeException if {@code exactPValue} is {@code true} * and {@code x.length} > 30 * @throws ConvergenceException if the p-value can not be computed due to * a convergence error * @throws MaxCountExceededException if the maximum number of iterations * is exceeded */ public double wilcoxonSignedRankTest(final double[] x, final double[] y, final boolean exactPValue) throws NullArgumentException, NoDataException, DimensionMismatchException, NumberIsTooLargeException, ConvergenceException, MaxCountExceededException { ensureDataConformance(x, y); final int N = x.length; final double Wmax = wilcoxonSignedRank(x, y); if (exactPValue && N > 30) { throw new NumberIsTooLargeException(N, 30, true); } if (exactPValue) { return calculateExactPValue(Wmax, N); } else { final double Wmin = ( (double)(N*(N+1)) / 2.0 ) - Wmax; return calculateAsymptoticPValue(Wmin, N); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy