All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.openjdk.jmh.results.Result Maven / Gradle / Ivy

There is a newer version: 23.0.6
Show newest version
/*
 * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */
package org.openjdk.jmh.results;

import org.openjdk.jmh.util.Deduplicator;
import org.openjdk.jmh.util.ScoreFormatter;
import org.openjdk.jmh.util.SingletonStatistics;
import org.openjdk.jmh.util.Statistics;

import java.io.PrintWriter;
import java.io.Serializable;
import java.io.StringWriter;
import java.util.Collection;
import java.util.Collections;

/**
 * Base class for all types of results that can be returned by a benchmark.
 */
public abstract class Result> implements Serializable {
    private static final long serialVersionUID = -7332879501317733312L;
    private static final Deduplicator DEDUP = new Deduplicator<>();

    protected final ResultRole role;
    protected final String label;
    protected final String unit;
    protected final Statistics statistics;
    protected final AggregationPolicy policy;

    public Result(ResultRole role, String label, Statistics s, String unit, AggregationPolicy policy) {
        this.role = role;
        this.label = DEDUP.dedup(label);
        this.unit = DEDUP.dedup(unit);
        this.statistics = s;
        this.policy = policy;
    }

    protected static Statistics of(double v) {
        return new SingletonStatistics(v);
    }

    /**
     * Return the result label.
     * @return result label
     */
    public String getLabel() {
        return label;
    }

    /**
     * Return the result role.
     * @return result role
     */
    public ResultRole getRole() {
        return role;
    }

    /**
     * Return the statistics holding the subresults' values.
     *
     * 

This method returns raw samples. The aggregation policy decides how to get the score * out of these raw samples. Use {@link #getScore()}, {@link #getScoreError()}, and * {@link #getScoreConfidence()} for scalar results.

* * @return statistics */ public Statistics getStatistics() { return statistics; } /** * The unit of the score for this result. * * @return String representation of the unit */ public final String getScoreUnit() { return unit; } /** * The score for this result. * * @return double representing the score * @see #getScoreError() */ public double getScore() { switch (policy) { case AVG: return statistics.getMean(); case SUM: return statistics.getSum(); case MAX: return statistics.getMax(); case MIN: return statistics.getMin(); default: throw new IllegalStateException("Unknown aggregation policy: " + policy); } } /** * The score error for this result. * @return score error, if available * @see #getScore() */ public double getScoreError() { switch (policy) { case AVG: return statistics.getMeanErrorAt(0.999); case SUM: case MIN: case MAX: return Double.NaN; default: throw new IllegalStateException("Unknown aggregation policy: " + policy); } } /** * The score confidence interval for this result. * @return score confidence interval, if available; if not, the CI will match {@link #getScore()} * @see #getScore() */ public double[] getScoreConfidence() { switch (policy) { case AVG: return statistics.getConfidenceIntervalAt(0.999); case MAX: case MIN: case SUM: double score = getScore(); return new double[] {score, score}; default: throw new IllegalStateException("Unknown aggregation policy: " + policy); } } /** * Get number of samples in the current result. * @return number of samples */ public long getSampleCount() { return statistics.getN(); } /** * Thread aggregator combines the thread results into iteration result. * @return thread aggregator */ protected abstract Aggregator getThreadAggregator(); /** * Iteration aggregator combines the iteration results into benchmar result. * @return iteration aggregator */ protected abstract Aggregator getIterationAggregator(); /** * Returns "0" result. This is used for un-biased aggregation of secondary results. * For instance, profilers might omit results in some iterations, thus we should pretend there were 0 results. * @return result that represents "empty" result, null if no sensible "empty" result can be created */ protected T getZeroResult() { return null; } /** * @return derivative results for this result. These do not participate in aggregation, * and computed on the spot from the aggregated result. */ protected Collection getDerivativeResults() { return Collections.emptyList(); } /** * Result as represented by a String. * * @return String with the result and unit */ @Override public String toString() { if (!Double.isNaN(getScoreError()) && !ScoreFormatter.isApproximate(getScore())) { return String.format("%s \u00B1(99.9%%) %s %s", ScoreFormatter.format(getScore()), ScoreFormatter.formatError(getScoreError()), getScoreUnit()); } else { return String.format("%s %s", ScoreFormatter.format(getScore()), getScoreUnit()); } } /** * Print extended result information * @return String with extended info */ public String extendedInfo() { return simpleExtendedInfo(); } protected String simpleExtendedInfo() { StringWriter sw = new StringWriter(); PrintWriter pw = new PrintWriter(sw); Statistics stats = getStatistics(); if (stats.getN() > 2 && !ScoreFormatter.isApproximate(getScore())) { double[] interval = getScoreConfidence(); pw.println(String.format(" %s \u00B1(99.9%%) %s %s [%s]", ScoreFormatter.format(getScore()), ScoreFormatter.formatError((interval[1] - interval[0]) / 2), getScoreUnit(), policy)); pw.println(String.format(" (min, avg, max) = (%s, %s, %s), stdev = %s%n" + " CI (99.9%%): [%s, %s] (assumes normal distribution)", ScoreFormatter.format(stats.getMin()), ScoreFormatter.format(stats.getMean()), ScoreFormatter.format(stats.getMax()), ScoreFormatter.formatError(stats.getStandardDeviation()), ScoreFormatter.format(interval[0]), ScoreFormatter.format(interval[1])) ); } else { pw.println(String.format(" %s %s", ScoreFormatter.format(stats.getMean()), getScoreUnit())); } pw.close(); return sw.toString(); } protected String distributionExtendedInfo() { Statistics stats = getStatistics(); StringBuilder sb = new StringBuilder(); if (stats.getN() > 2) { sb.append(" N = ").append(stats.getN()).append("\n"); double[] interval = stats.getConfidenceIntervalAt(0.999); sb.append(String.format(" mean = %s \u00B1(99.9%%) %s", ScoreFormatter.format(10, stats.getMean()), ScoreFormatter.formatError((interval[1] - interval[0]) / 2) )); sb.append(" ").append(getScoreUnit()).append("\n"); printHisto(stats, sb); printPercentiles(stats, sb); } return sb.toString(); } private void printPercentiles(Statistics stats, StringBuilder sb) { sb.append("\n Percentiles, ").append(getScoreUnit()).append(":\n"); for (double p : new double[]{0.00, 0.50, 0.90, 0.95, 0.99, 0.999, 0.9999, 0.99999, 0.999999, 1.0}) { sb.append(String.format(" %11s = %s %s\n", "p(" + String.format("%.4f", p * 100) + ")", ScoreFormatter.format(10, stats.getPercentile(p * 100)), getScoreUnit() )); } } static class LazyProps { private static final int MIN_HISTOGRAM_BINS = Integer.getInteger("jmh.histogramBins", 10); } private void printHisto(Statistics stats, StringBuilder sb) { sb.append("\n Histogram, ").append(getScoreUnit()).append(":\n"); double min = stats.getMin(); double max = stats.getMax(); double binSize = Math.pow(10, Math.floor(Math.log10(max - min))); min = Math.floor(min / binSize) * binSize; max = Math.ceil(max / binSize) * binSize; double range = max - min; double[] levels; if (range > 0) { while ((range / binSize) < LazyProps.MIN_HISTOGRAM_BINS) { binSize /= 2; } int binCount = Math.max(2, (int) Math.ceil(range / binSize)); levels = new double[binCount]; for (int c = 0; c < binCount; c++) { levels[c] = min + (c * binSize); } } else { levels = new double[] { stats.getMin() - Math.ulp(stats.getMin()), stats.getMax() + Math.ulp(stats.getMax()) }; } int width = ScoreFormatter.format(1, max).length(); int[] histo = stats.getHistogram(levels); for (int c = 0; c < levels.length - 1; c++) { sb.append(String.format(" [%" + width + "s, %" + width + "s) = %d %n", ScoreFormatter.formatExact(width, levels[c]), ScoreFormatter.formatExact(width, levels[c + 1]), histo[c])); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy