All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.stat.descriptive.MultivariateSummaryStatistics Maven / Gradle / Ivy

There is a newer version: 23.0.6
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.stat.descriptive;

import java.io.Serializable;
import java.util.Arrays;

import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MathIllegalStateException;
import org.apache.commons.math3.linear.RealMatrix;
import org.apache.commons.math3.stat.descriptive.moment.GeometricMean;
import org.apache.commons.math3.stat.descriptive.moment.Mean;
import org.apache.commons.math3.stat.descriptive.moment.VectorialCovariance;
import org.apache.commons.math3.stat.descriptive.rank.Max;
import org.apache.commons.math3.stat.descriptive.rank.Min;
import org.apache.commons.math3.stat.descriptive.summary.Sum;
import org.apache.commons.math3.stat.descriptive.summary.SumOfLogs;
import org.apache.commons.math3.stat.descriptive.summary.SumOfSquares;
import org.apache.commons.math3.util.MathUtils;
import org.apache.commons.math3.util.MathArrays;
import org.apache.commons.math3.util.Precision;
import org.apache.commons.math3.util.FastMath;

/**
 * 

Computes summary statistics for a stream of n-tuples added using the * {@link #addValue(double[]) addValue} method. The data values are not stored * in memory, so this class can be used to compute statistics for very large * n-tuple streams.

* *

The {@link StorelessUnivariateStatistic} instances used to maintain * summary state and compute statistics are configurable via setters. * For example, the default implementation for the mean can be overridden by * calling {@link #setMeanImpl(StorelessUnivariateStatistic[])}. Actual * parameters to these methods must implement the * {@link StorelessUnivariateStatistic} interface and configuration must be * completed before addValue is called. No configuration is * necessary to use the default, commons-math provided implementations.

* *

To compute statistics for a stream of n-tuples, construct a * MultivariateStatistics instance with dimension n and then use * {@link #addValue(double[])} to add n-tuples. The getXxx * methods where Xxx is a statistic return an array of double * values, where for i = 0,...,n-1 the ith array element is the * value of the given statistic for data range consisting of the ith element of * each of the input n-tuples. For example, if addValue is called * with actual parameters {0, 1, 2}, then {3, 4, 5} and finally {6, 7, 8}, * getSum will return a three-element array with values * {0+3+6, 1+4+7, 2+5+8}

* *

Note: This class is not thread-safe. Use * {@link SynchronizedMultivariateSummaryStatistics} if concurrent access from multiple * threads is required.

* * @since 1.2 * @version $Id: MultivariateSummaryStatistics.java 1416643 2012-12-03 19:37:14Z tn $ */ public class MultivariateSummaryStatistics implements StatisticalMultivariateSummary, Serializable { /** Serialization UID */ private static final long serialVersionUID = 2271900808994826718L; /** Dimension of the data. */ private int k; /** Count of values that have been added */ private long n = 0; /** Sum statistic implementation - can be reset by setter. */ private StorelessUnivariateStatistic[] sumImpl; /** Sum of squares statistic implementation - can be reset by setter. */ private StorelessUnivariateStatistic[] sumSqImpl; /** Minimum statistic implementation - can be reset by setter. */ private StorelessUnivariateStatistic[] minImpl; /** Maximum statistic implementation - can be reset by setter. */ private StorelessUnivariateStatistic[] maxImpl; /** Sum of log statistic implementation - can be reset by setter. */ private StorelessUnivariateStatistic[] sumLogImpl; /** Geometric mean statistic implementation - can be reset by setter. */ private StorelessUnivariateStatistic[] geoMeanImpl; /** Mean statistic implementation - can be reset by setter. */ private StorelessUnivariateStatistic[] meanImpl; /** Covariance statistic implementation - cannot be reset. */ private VectorialCovariance covarianceImpl; /** * Construct a MultivariateSummaryStatistics instance * @param k dimension of the data * @param isCovarianceBiasCorrected if true, the unbiased sample * covariance is computed, otherwise the biased population covariance * is computed */ public MultivariateSummaryStatistics(int k, boolean isCovarianceBiasCorrected) { this.k = k; sumImpl = new StorelessUnivariateStatistic[k]; sumSqImpl = new StorelessUnivariateStatistic[k]; minImpl = new StorelessUnivariateStatistic[k]; maxImpl = new StorelessUnivariateStatistic[k]; sumLogImpl = new StorelessUnivariateStatistic[k]; geoMeanImpl = new StorelessUnivariateStatistic[k]; meanImpl = new StorelessUnivariateStatistic[k]; for (int i = 0; i < k; ++i) { sumImpl[i] = new Sum(); sumSqImpl[i] = new SumOfSquares(); minImpl[i] = new Min(); maxImpl[i] = new Max(); sumLogImpl[i] = new SumOfLogs(); geoMeanImpl[i] = new GeometricMean(); meanImpl[i] = new Mean(); } covarianceImpl = new VectorialCovariance(k, isCovarianceBiasCorrected); } /** * Add an n-tuple to the data * * @param value the n-tuple to add * @throws DimensionMismatchException if the length of the array * does not match the one used at construction */ public void addValue(double[] value) throws DimensionMismatchException { checkDimension(value.length); for (int i = 0; i < k; ++i) { double v = value[i]; sumImpl[i].increment(v); sumSqImpl[i].increment(v); minImpl[i].increment(v); maxImpl[i].increment(v); sumLogImpl[i].increment(v); geoMeanImpl[i].increment(v); meanImpl[i].increment(v); } covarianceImpl.increment(value); n++; } /** * Returns the dimension of the data * @return The dimension of the data */ public int getDimension() { return k; } /** * Returns the number of available values * @return The number of available values */ public long getN() { return n; } /** * Returns an array of the results of a statistic. * @param stats univariate statistic array * @return results array */ private double[] getResults(StorelessUnivariateStatistic[] stats) { double[] results = new double[stats.length]; for (int i = 0; i < results.length; ++i) { results[i] = stats[i].getResult(); } return results; } /** * Returns an array whose ith entry is the sum of the * ith entries of the arrays that have been added using * {@link #addValue(double[])} * * @return the array of component sums */ public double[] getSum() { return getResults(sumImpl); } /** * Returns an array whose ith entry is the sum of squares of the * ith entries of the arrays that have been added using * {@link #addValue(double[])} * * @return the array of component sums of squares */ public double[] getSumSq() { return getResults(sumSqImpl); } /** * Returns an array whose ith entry is the sum of logs of the * ith entries of the arrays that have been added using * {@link #addValue(double[])} * * @return the array of component log sums */ public double[] getSumLog() { return getResults(sumLogImpl); } /** * Returns an array whose ith entry is the mean of the * ith entries of the arrays that have been added using * {@link #addValue(double[])} * * @return the array of component means */ public double[] getMean() { return getResults(meanImpl); } /** * Returns an array whose ith entry is the standard deviation of the * ith entries of the arrays that have been added using * {@link #addValue(double[])} * * @return the array of component standard deviations */ public double[] getStandardDeviation() { double[] stdDev = new double[k]; if (getN() < 1) { Arrays.fill(stdDev, Double.NaN); } else if (getN() < 2) { Arrays.fill(stdDev, 0.0); } else { RealMatrix matrix = covarianceImpl.getResult(); for (int i = 0; i < k; ++i) { stdDev[i] = FastMath.sqrt(matrix.getEntry(i, i)); } } return stdDev; } /** * Returns the covariance matrix of the values that have been added. * * @return the covariance matrix */ public RealMatrix getCovariance() { return covarianceImpl.getResult(); } /** * Returns an array whose ith entry is the maximum of the * ith entries of the arrays that have been added using * {@link #addValue(double[])} * * @return the array of component maxima */ public double[] getMax() { return getResults(maxImpl); } /** * Returns an array whose ith entry is the minimum of the * ith entries of the arrays that have been added using * {@link #addValue(double[])} * * @return the array of component minima */ public double[] getMin() { return getResults(minImpl); } /** * Returns an array whose ith entry is the geometric mean of the * ith entries of the arrays that have been added using * {@link #addValue(double[])} * * @return the array of component geometric means */ public double[] getGeometricMean() { return getResults(geoMeanImpl); } /** * Generates a text report displaying * summary statistics from values that * have been added. * @return String with line feeds displaying statistics */ @Override public String toString() { final String separator = ", "; final String suffix = System.getProperty("line.separator"); StringBuilder outBuffer = new StringBuilder(); outBuffer.append("MultivariateSummaryStatistics:" + suffix); outBuffer.append("n: " + getN() + suffix); append(outBuffer, getMin(), "min: ", separator, suffix); append(outBuffer, getMax(), "max: ", separator, suffix); append(outBuffer, getMean(), "mean: ", separator, suffix); append(outBuffer, getGeometricMean(), "geometric mean: ", separator, suffix); append(outBuffer, getSumSq(), "sum of squares: ", separator, suffix); append(outBuffer, getSumLog(), "sum of logarithms: ", separator, suffix); append(outBuffer, getStandardDeviation(), "standard deviation: ", separator, suffix); outBuffer.append("covariance: " + getCovariance().toString() + suffix); return outBuffer.toString(); } /** * Append a text representation of an array to a buffer. * @param buffer buffer to fill * @param data data array * @param prefix text prefix * @param separator elements separator * @param suffix text suffix */ private void append(StringBuilder buffer, double[] data, String prefix, String separator, String suffix) { buffer.append(prefix); for (int i = 0; i < data.length; ++i) { if (i > 0) { buffer.append(separator); } buffer.append(data[i]); } buffer.append(suffix); } /** * Resets all statistics and storage */ public void clear() { this.n = 0; for (int i = 0; i < k; ++i) { minImpl[i].clear(); maxImpl[i].clear(); sumImpl[i].clear(); sumLogImpl[i].clear(); sumSqImpl[i].clear(); geoMeanImpl[i].clear(); meanImpl[i].clear(); } covarianceImpl.clear(); } /** * Returns true iff object is a MultivariateSummaryStatistics * instance and all statistics have the same values as this. * @param object the object to test equality against. * @return true if object equals this */ @Override public boolean equals(Object object) { if (object == this ) { return true; } if (object instanceof MultivariateSummaryStatistics == false) { return false; } MultivariateSummaryStatistics stat = (MultivariateSummaryStatistics) object; return MathArrays.equalsIncludingNaN(stat.getGeometricMean(), getGeometricMean()) && MathArrays.equalsIncludingNaN(stat.getMax(), getMax()) && MathArrays.equalsIncludingNaN(stat.getMean(), getMean()) && MathArrays.equalsIncludingNaN(stat.getMin(), getMin()) && Precision.equalsIncludingNaN(stat.getN(), getN()) && MathArrays.equalsIncludingNaN(stat.getSum(), getSum()) && MathArrays.equalsIncludingNaN(stat.getSumSq(), getSumSq()) && MathArrays.equalsIncludingNaN(stat.getSumLog(), getSumLog()) && stat.getCovariance().equals( getCovariance()); } /** * Returns hash code based on values of statistics * * @return hash code */ @Override public int hashCode() { int result = 31 + MathUtils.hash(getGeometricMean()); result = result * 31 + MathUtils.hash(getGeometricMean()); result = result * 31 + MathUtils.hash(getMax()); result = result * 31 + MathUtils.hash(getMean()); result = result * 31 + MathUtils.hash(getMin()); result = result * 31 + MathUtils.hash(getN()); result = result * 31 + MathUtils.hash(getSum()); result = result * 31 + MathUtils.hash(getSumSq()); result = result * 31 + MathUtils.hash(getSumLog()); result = result * 31 + getCovariance().hashCode(); return result; } // Getters and setters for statistics implementations /** * Sets statistics implementations. * @param newImpl new implementations for statistics * @param oldImpl old implementations for statistics * @throws DimensionMismatchException if the array dimension * does not match the one used at construction * @throws MathIllegalStateException if data has already been added * (i.e. if n > 0) */ private void setImpl(StorelessUnivariateStatistic[] newImpl, StorelessUnivariateStatistic[] oldImpl) throws MathIllegalStateException, DimensionMismatchException { checkEmpty(); checkDimension(newImpl.length); System.arraycopy(newImpl, 0, oldImpl, 0, newImpl.length); } /** * Returns the currently configured Sum implementation * * @return the StorelessUnivariateStatistic implementing the sum */ public StorelessUnivariateStatistic[] getSumImpl() { return sumImpl.clone(); } /** *

Sets the implementation for the Sum.

*

This method must be activated before any data has been added - i.e., * before {@link #addValue(double[]) addValue} has been used to add data; * otherwise an IllegalStateException will be thrown.

* * @param sumImpl the StorelessUnivariateStatistic instance to use * for computing the Sum * @throws DimensionMismatchException if the array dimension * does not match the one used at construction * @throws MathIllegalStateException if data has already been added * (i.e if n > 0) */ public void setSumImpl(StorelessUnivariateStatistic[] sumImpl) throws MathIllegalStateException, DimensionMismatchException { setImpl(sumImpl, this.sumImpl); } /** * Returns the currently configured sum of squares implementation * * @return the StorelessUnivariateStatistic implementing the sum of squares */ public StorelessUnivariateStatistic[] getSumsqImpl() { return sumSqImpl.clone(); } /** *

Sets the implementation for the sum of squares.

*

This method must be activated before any data has been added - i.e., * before {@link #addValue(double[]) addValue} has been used to add data; * otherwise an IllegalStateException will be thrown.

* * @param sumsqImpl the StorelessUnivariateStatistic instance to use * for computing the sum of squares * @throws DimensionMismatchException if the array dimension * does not match the one used at construction * @throws MathIllegalStateException if data has already been added * (i.e if n > 0) */ public void setSumsqImpl(StorelessUnivariateStatistic[] sumsqImpl) throws MathIllegalStateException, DimensionMismatchException { setImpl(sumsqImpl, this.sumSqImpl); } /** * Returns the currently configured minimum implementation * * @return the StorelessUnivariateStatistic implementing the minimum */ public StorelessUnivariateStatistic[] getMinImpl() { return minImpl.clone(); } /** *

Sets the implementation for the minimum.

*

This method must be activated before any data has been added - i.e., * before {@link #addValue(double[]) addValue} has been used to add data; * otherwise an IllegalStateException will be thrown.

* * @param minImpl the StorelessUnivariateStatistic instance to use * for computing the minimum * @throws DimensionMismatchException if the array dimension * does not match the one used at construction * @throws MathIllegalStateException if data has already been added * (i.e if n > 0) */ public void setMinImpl(StorelessUnivariateStatistic[] minImpl) throws MathIllegalStateException, DimensionMismatchException { setImpl(minImpl, this.minImpl); } /** * Returns the currently configured maximum implementation * * @return the StorelessUnivariateStatistic implementing the maximum */ public StorelessUnivariateStatistic[] getMaxImpl() { return maxImpl.clone(); } /** *

Sets the implementation for the maximum.

*

This method must be activated before any data has been added - i.e., * before {@link #addValue(double[]) addValue} has been used to add data; * otherwise an IllegalStateException will be thrown.

* * @param maxImpl the StorelessUnivariateStatistic instance to use * for computing the maximum * @throws DimensionMismatchException if the array dimension * does not match the one used at construction * @throws MathIllegalStateException if data has already been added * (i.e if n > 0) */ public void setMaxImpl(StorelessUnivariateStatistic[] maxImpl) throws MathIllegalStateException, DimensionMismatchException{ setImpl(maxImpl, this.maxImpl); } /** * Returns the currently configured sum of logs implementation * * @return the StorelessUnivariateStatistic implementing the log sum */ public StorelessUnivariateStatistic[] getSumLogImpl() { return sumLogImpl.clone(); } /** *

Sets the implementation for the sum of logs.

*

This method must be activated before any data has been added - i.e., * before {@link #addValue(double[]) addValue} has been used to add data; * otherwise an IllegalStateException will be thrown.

* * @param sumLogImpl the StorelessUnivariateStatistic instance to use * for computing the log sum * @throws DimensionMismatchException if the array dimension * does not match the one used at construction * @throws MathIllegalStateException if data has already been added * (i.e if n > 0) */ public void setSumLogImpl(StorelessUnivariateStatistic[] sumLogImpl) throws MathIllegalStateException, DimensionMismatchException{ setImpl(sumLogImpl, this.sumLogImpl); } /** * Returns the currently configured geometric mean implementation * * @return the StorelessUnivariateStatistic implementing the geometric mean */ public StorelessUnivariateStatistic[] getGeoMeanImpl() { return geoMeanImpl.clone(); } /** *

Sets the implementation for the geometric mean.

*

This method must be activated before any data has been added - i.e., * before {@link #addValue(double[]) addValue} has been used to add data; * otherwise an IllegalStateException will be thrown.

* * @param geoMeanImpl the StorelessUnivariateStatistic instance to use * for computing the geometric mean * @throws DimensionMismatchException if the array dimension * does not match the one used at construction * @throws MathIllegalStateException if data has already been added * (i.e if n > 0) */ public void setGeoMeanImpl(StorelessUnivariateStatistic[] geoMeanImpl) throws MathIllegalStateException, DimensionMismatchException { setImpl(geoMeanImpl, this.geoMeanImpl); } /** * Returns the currently configured mean implementation * * @return the StorelessUnivariateStatistic implementing the mean */ public StorelessUnivariateStatistic[] getMeanImpl() { return meanImpl.clone(); } /** *

Sets the implementation for the mean.

*

This method must be activated before any data has been added - i.e., * before {@link #addValue(double[]) addValue} has been used to add data; * otherwise an IllegalStateException will be thrown.

* * @param meanImpl the StorelessUnivariateStatistic instance to use * for computing the mean * @throws DimensionMismatchException if the array dimension * does not match the one used at construction * @throws MathIllegalStateException if data has already been added * (i.e if n > 0) */ public void setMeanImpl(StorelessUnivariateStatistic[] meanImpl) throws MathIllegalStateException, DimensionMismatchException{ setImpl(meanImpl, this.meanImpl); } /** * Throws MathIllegalStateException if the statistic is not empty. * @throws MathIllegalStateException if n > 0. */ private void checkEmpty() throws MathIllegalStateException { if (n > 0) { throw new MathIllegalStateException( LocalizedFormats.VALUES_ADDED_BEFORE_CONFIGURING_STATISTIC, n); } } /** * Throws DimensionMismatchException if dimension != k. * @param dimension dimension to check * @throws DimensionMismatchException if dimension != k */ private void checkDimension(int dimension) throws DimensionMismatchException { if (dimension != k) { throw new DimensionMismatchException(dimension, k); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy