All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.geometry.partitioning.AbstractRegion Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.geometry.partitioning;

import java.lang.reflect.Array;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Comparator;
import java.util.Iterator;
import java.util.TreeSet;

import org.apache.commons.math3.exception.MathInternalError;
import org.apache.commons.math3.geometry.Space;
import org.apache.commons.math3.geometry.Vector;

/** Abstract class for all regions, independently of geometry type or dimension.

 * @param  Type of the space.
 * @param  Type of the sub-space.

 * @version $Id: AbstractRegion.java 1416643 2012-12-03 19:37:14Z tn $
 * @since 3.0
 */
public abstract class AbstractRegion implements Region {

    /** Inside/Outside BSP tree. */
    private BSPTree tree;

    /** Size of the instance. */
    private double size;

    /** Barycenter. */
    private Vector barycenter;

    /** Build a region representing the whole space.
     */
    protected AbstractRegion() {
        tree = new BSPTree(Boolean.TRUE);
    }

    /** Build a region from an inside/outside BSP tree.
     * 

The leaf nodes of the BSP tree must have a * {@code Boolean} attribute representing the inside status of * the corresponding cell (true for inside cells, false for outside * cells). In order to avoid building too many small objects, it is * recommended to use the predefined constants * {@code Boolean.TRUE} and {@code Boolean.FALSE}. The * tree also must have either null internal nodes or * internal nodes representing the boundary as specified in the * {@link #getTree getTree} method).

* @param tree inside/outside BSP tree representing the region */ protected AbstractRegion(final BSPTree tree) { this.tree = tree; } /** Build a Region from a Boundary REPresentation (B-rep). *

The boundary is provided as a collection of {@link * SubHyperplane sub-hyperplanes}. Each sub-hyperplane has the * interior part of the region on its minus side and the exterior on * its plus side.

*

The boundary elements can be in any order, and can form * several non-connected sets (like for example polygons with holes * or a set of disjoints polyhedrons considered as a whole). In * fact, the elements do not even need to be connected together * (their topological connections are not used here). However, if the * boundary does not really separate an inside open from an outside * open (open having here its topological meaning), then subsequent * calls to the {@link #checkPoint(Vector) checkPoint} method will not be * meaningful anymore.

*

If the boundary is empty, the region will represent the whole * space.

* @param boundary collection of boundary elements, as a * collection of {@link SubHyperplane SubHyperplane} objects */ protected AbstractRegion(final Collection> boundary) { if (boundary.size() == 0) { // the tree represents the whole space tree = new BSPTree(Boolean.TRUE); } else { // sort the boundary elements in decreasing size order // (we don't want equal size elements to be removed, so // we use a trick to fool the TreeSet) final TreeSet> ordered = new TreeSet>(new Comparator>() { public int compare(final SubHyperplane o1, final SubHyperplane o2) { final double size1 = o1.getSize(); final double size2 = o2.getSize(); return (size2 < size1) ? -1 : ((o1 == o2) ? 0 : +1); } }); ordered.addAll(boundary); // build the tree top-down tree = new BSPTree(); insertCuts(tree, ordered); // set up the inside/outside flags tree.visit(new BSPTreeVisitor() { /** {@inheritDoc} */ public Order visitOrder(final BSPTree node) { return Order.PLUS_SUB_MINUS; } /** {@inheritDoc} */ public void visitInternalNode(final BSPTree node) { } /** {@inheritDoc} */ public void visitLeafNode(final BSPTree node) { node.setAttribute((node == node.getParent().getPlus()) ? Boolean.FALSE : Boolean.TRUE); } }); } } /** Build a convex region from an array of bounding hyperplanes. * @param hyperplanes array of bounding hyperplanes (if null, an * empty region will be built) */ public AbstractRegion(final Hyperplane[] hyperplanes) { if ((hyperplanes == null) || (hyperplanes.length == 0)) { tree = new BSPTree(Boolean.FALSE); } else { // use the first hyperplane to build the right class tree = hyperplanes[0].wholeSpace().getTree(false); // chop off parts of the space BSPTree node = tree; node.setAttribute(Boolean.TRUE); for (final Hyperplane hyperplane : hyperplanes) { if (node.insertCut(hyperplane)) { node.setAttribute(null); node.getPlus().setAttribute(Boolean.FALSE); node = node.getMinus(); node.setAttribute(Boolean.TRUE); } } } } /** {@inheritDoc} */ public abstract AbstractRegion buildNew(BSPTree newTree); /** Recursively build a tree by inserting cut sub-hyperplanes. * @param node current tree node (it is a leaf node at the beginning * of the call) * @param boundary collection of edges belonging to the cell defined * by the node */ private void insertCuts(final BSPTree node, final Collection> boundary) { final Iterator> iterator = boundary.iterator(); // build the current level Hyperplane inserted = null; while ((inserted == null) && iterator.hasNext()) { inserted = iterator.next().getHyperplane(); if (!node.insertCut(inserted.copySelf())) { inserted = null; } } if (!iterator.hasNext()) { return; } // distribute the remaining edges in the two sub-trees final ArrayList> plusList = new ArrayList>(); final ArrayList> minusList = new ArrayList>(); while (iterator.hasNext()) { final SubHyperplane other = iterator.next(); switch (other.side(inserted)) { case PLUS: plusList.add(other); break; case MINUS: minusList.add(other); break; case BOTH: final SubHyperplane.SplitSubHyperplane split = other.split(inserted); plusList.add(split.getPlus()); minusList.add(split.getMinus()); break; default: // ignore the sub-hyperplanes belonging to the cut hyperplane } } // recurse through lower levels insertCuts(node.getPlus(), plusList); insertCuts(node.getMinus(), minusList); } /** {@inheritDoc} */ public AbstractRegion copySelf() { return buildNew(tree.copySelf()); } /** {@inheritDoc} */ public boolean isEmpty() { return isEmpty(tree); } /** {@inheritDoc} */ public boolean isEmpty(final BSPTree node) { // we use a recursive function rather than the BSPTreeVisitor // interface because we can stop visiting the tree as soon as we // have found an inside cell if (node.getCut() == null) { // if we find an inside node, the region is not empty return !((Boolean) node.getAttribute()); } // check both sides of the sub-tree return isEmpty(node.getMinus()) && isEmpty(node.getPlus()); } /** {@inheritDoc} */ public boolean contains(final Region region) { return new RegionFactory().difference(region, this).isEmpty(); } /** {@inheritDoc} */ public Location checkPoint(final Vector point) { return checkPoint(tree, point); } /** Check a point with respect to the region starting at a given node. * @param node root node of the region * @param point point to check * @return a code representing the point status: either {@link * Region.Location#INSIDE INSIDE}, {@link Region.Location#OUTSIDE * OUTSIDE} or {@link Region.Location#BOUNDARY BOUNDARY} */ protected Location checkPoint(final BSPTree node, final Vector point) { final BSPTree cell = node.getCell(point); if (cell.getCut() == null) { // the point is in the interior of a cell, just check the attribute return ((Boolean) cell.getAttribute()) ? Location.INSIDE : Location.OUTSIDE; } // the point is on a cut-sub-hyperplane, is it on a boundary ? final Location minusCode = checkPoint(cell.getMinus(), point); final Location plusCode = checkPoint(cell.getPlus(), point); return (minusCode == plusCode) ? minusCode : Location.BOUNDARY; } /** {@inheritDoc} */ public BSPTree getTree(final boolean includeBoundaryAttributes) { if (includeBoundaryAttributes && (tree.getCut() != null) && (tree.getAttribute() == null)) { // we need to compute the boundary attributes tree.visit(new BoundaryBuilder()); } return tree; } /** Visitor building boundary shell tree. *

* The boundary shell is represented as {@link BoundaryAttribute boundary attributes} * at each internal node. *

*/ private static class BoundaryBuilder implements BSPTreeVisitor { /** {@inheritDoc} */ public Order visitOrder(BSPTree node) { return Order.PLUS_MINUS_SUB; } /** {@inheritDoc} */ public void visitInternalNode(BSPTree node) { SubHyperplane plusOutside = null; SubHyperplane plusInside = null; // characterize the cut sub-hyperplane, // first with respect to the plus sub-tree @SuppressWarnings("unchecked") final SubHyperplane[] plusChar = (SubHyperplane[]) Array.newInstance(SubHyperplane.class, 2); characterize(node.getPlus(), node.getCut().copySelf(), plusChar); if (plusChar[0] != null && !plusChar[0].isEmpty()) { // plusChar[0] corresponds to a subset of the cut sub-hyperplane known to have // outside cells on its plus side, we want to check if parts of this subset // do have inside cells on their minus side @SuppressWarnings("unchecked") final SubHyperplane[] minusChar = (SubHyperplane[]) Array.newInstance(SubHyperplane.class, 2); characterize(node.getMinus(), plusChar[0], minusChar); if (minusChar[1] != null && !minusChar[1].isEmpty()) { // this part belongs to the boundary, // it has the outside on its plus side and the inside on its minus side plusOutside = minusChar[1]; } } if (plusChar[1] != null && !plusChar[1].isEmpty()) { // plusChar[1] corresponds to a subset of the cut sub-hyperplane known to have // inside cells on its plus side, we want to check if parts of this subset // do have outside cells on their minus side @SuppressWarnings("unchecked") final SubHyperplane[] minusChar = (SubHyperplane[]) Array.newInstance(SubHyperplane.class, 2); characterize(node.getMinus(), plusChar[1], minusChar); if (minusChar[0] != null && !minusChar[0].isEmpty()) { // this part belongs to the boundary, // it has the inside on its plus side and the outside on its minus side plusInside = minusChar[0]; } } // set the boundary attribute at non-leaf nodes node.setAttribute(new BoundaryAttribute(plusOutside, plusInside)); } /** {@inheritDoc} */ public void visitLeafNode(BSPTree node) { } /** Filter the parts of an hyperplane belonging to the boundary. *

The filtering consist in splitting the specified * sub-hyperplane into several parts lying in inside and outside * cells of the tree. The principle is to call this method twice for * each cut sub-hyperplane in the tree, once one the plus node and * once on the minus node. The parts that have the same flag * (inside/inside or outside/outside) do not belong to the boundary * while parts that have different flags (inside/outside or * outside/inside) do belong to the boundary.

* @param node current BSP tree node * @param sub sub-hyperplane to characterize * @param characterization placeholder where to put the characterized parts */ private void characterize(final BSPTree node, final SubHyperplane sub, final SubHyperplane[] characterization) { if (node.getCut() == null) { // we have reached a leaf node final boolean inside = (Boolean) node.getAttribute(); if (inside) { if (characterization[1] == null) { characterization[1] = sub; } else { characterization[1] = characterization[1].reunite(sub); } } else { if (characterization[0] == null) { characterization[0] = sub; } else { characterization[0] = characterization[0].reunite(sub); } } } else { final Hyperplane hyperplane = node.getCut().getHyperplane(); switch (sub.side(hyperplane)) { case PLUS: characterize(node.getPlus(), sub, characterization); break; case MINUS: characterize(node.getMinus(), sub, characterization); break; case BOTH: final SubHyperplane.SplitSubHyperplane split = sub.split(hyperplane); characterize(node.getPlus(), split.getPlus(), characterization); characterize(node.getMinus(), split.getMinus(), characterization); break; default: // this should not happen throw new MathInternalError(); } } } } /** {@inheritDoc} */ public double getBoundarySize() { final BoundarySizeVisitor visitor = new BoundarySizeVisitor(); getTree(true).visit(visitor); return visitor.getSize(); } /** {@inheritDoc} */ public double getSize() { if (barycenter == null) { computeGeometricalProperties(); } return size; } /** Set the size of the instance. * @param size size of the instance */ protected void setSize(final double size) { this.size = size; } /** {@inheritDoc} */ public Vector getBarycenter() { if (barycenter == null) { computeGeometricalProperties(); } return barycenter; } /** Set the barycenter of the instance. * @param barycenter barycenter of the instance */ protected void setBarycenter(final Vector barycenter) { this.barycenter = barycenter; } /** Compute some geometrical properties. *

The properties to compute are the barycenter and the size.

*/ protected abstract void computeGeometricalProperties(); /** {@inheritDoc} */ public Side side(final Hyperplane hyperplane) { final Sides sides = new Sides(); recurseSides(tree, hyperplane.wholeHyperplane(), sides); return sides.plusFound() ? (sides.minusFound() ? Side.BOTH : Side.PLUS) : (sides.minusFound() ? Side.MINUS : Side.HYPER); } /** Search recursively for inside leaf nodes on each side of the given hyperplane. *

The algorithm used here is directly derived from the one * described in section III (Binary Partitioning of a BSP * Tree) of the Bruce Naylor, John Amanatides and William * Thibault paper Merging * BSP Trees Yields Polyhedral Set Operations Proc. Siggraph * '90, Computer Graphics 24(4), August 1990, pp 115-124, published * by the Association for Computing Machinery (ACM)..

* @param node current BSP tree node * @param sub sub-hyperplane * @param sides object holding the sides found */ private void recurseSides(final BSPTree node, final SubHyperplane sub, final Sides sides) { if (node.getCut() == null) { if ((Boolean) node.getAttribute()) { // this is an inside cell expanding across the hyperplane sides.rememberPlusFound(); sides.rememberMinusFound(); } return; } final Hyperplane hyperplane = node.getCut().getHyperplane(); switch (sub.side(hyperplane)) { case PLUS : // the sub-hyperplane is entirely in the plus sub-tree if (node.getCut().side(sub.getHyperplane()) == Side.PLUS) { if (!isEmpty(node.getMinus())) { sides.rememberPlusFound(); } } else { if (!isEmpty(node.getMinus())) { sides.rememberMinusFound(); } } if (!(sides.plusFound() && sides.minusFound())) { recurseSides(node.getPlus(), sub, sides); } break; case MINUS : // the sub-hyperplane is entirely in the minus sub-tree if (node.getCut().side(sub.getHyperplane()) == Side.PLUS) { if (!isEmpty(node.getPlus())) { sides.rememberPlusFound(); } } else { if (!isEmpty(node.getPlus())) { sides.rememberMinusFound(); } } if (!(sides.plusFound() && sides.minusFound())) { recurseSides(node.getMinus(), sub, sides); } break; case BOTH : // the sub-hyperplane extends in both sub-trees final SubHyperplane.SplitSubHyperplane split = sub.split(hyperplane); // explore first the plus sub-tree recurseSides(node.getPlus(), split.getPlus(), sides); // if needed, explore the minus sub-tree if (!(sides.plusFound() && sides.minusFound())) { recurseSides(node.getMinus(), split.getMinus(), sides); } break; default : // the sub-hyperplane and the cut sub-hyperplane share the same hyperplane if (node.getCut().getHyperplane().sameOrientationAs(sub.getHyperplane())) { if ((node.getPlus().getCut() != null) || ((Boolean) node.getPlus().getAttribute())) { sides.rememberPlusFound(); } if ((node.getMinus().getCut() != null) || ((Boolean) node.getMinus().getAttribute())) { sides.rememberMinusFound(); } } else { if ((node.getPlus().getCut() != null) || ((Boolean) node.getPlus().getAttribute())) { sides.rememberMinusFound(); } if ((node.getMinus().getCut() != null) || ((Boolean) node.getMinus().getAttribute())) { sides.rememberPlusFound(); } } } } /** Utility class holding the already found sides. */ private static final class Sides { /** Indicator of inside leaf nodes found on the plus side. */ private boolean plusFound; /** Indicator of inside leaf nodes found on the plus side. */ private boolean minusFound; /** Simple constructor. */ public Sides() { plusFound = false; minusFound = false; } /** Remember the fact that inside leaf nodes have been found on the plus side. */ public void rememberPlusFound() { plusFound = true; } /** Check if inside leaf nodes have been found on the plus side. * @return true if inside leaf nodes have been found on the plus side */ public boolean plusFound() { return plusFound; } /** Remember the fact that inside leaf nodes have been found on the minus side. */ public void rememberMinusFound() { minusFound = true; } /** Check if inside leaf nodes have been found on the minus side. * @return true if inside leaf nodes have been found on the minus side */ public boolean minusFound() { return minusFound; } } /** {@inheritDoc} */ public SubHyperplane intersection(final SubHyperplane sub) { return recurseIntersection(tree, sub); } /** Recursively compute the parts of a sub-hyperplane that are * contained in the region. * @param node current BSP tree node * @param sub sub-hyperplane traversing the region * @return filtered sub-hyperplane */ private SubHyperplane recurseIntersection(final BSPTree node, final SubHyperplane sub) { if (node.getCut() == null) { return (Boolean) node.getAttribute() ? sub.copySelf() : null; } final Hyperplane hyperplane = node.getCut().getHyperplane(); switch (sub.side(hyperplane)) { case PLUS : return recurseIntersection(node.getPlus(), sub); case MINUS : return recurseIntersection(node.getMinus(), sub); case BOTH : final SubHyperplane.SplitSubHyperplane split = sub.split(hyperplane); final SubHyperplane plus = recurseIntersection(node.getPlus(), split.getPlus()); final SubHyperplane minus = recurseIntersection(node.getMinus(), split.getMinus()); if (plus == null) { return minus; } else if (minus == null) { return plus; } else { return plus.reunite(minus); } default : return recurseIntersection(node.getPlus(), recurseIntersection(node.getMinus(), sub)); } } /** Transform a region. *

Applying a transform to a region consist in applying the * transform to all the hyperplanes of the underlying BSP tree and * of the boundary (and also to the sub-hyperplanes embedded in * these hyperplanes) and to the barycenter. The instance is not * modified, a new instance is built.

* @param transform transform to apply * @return a new region, resulting from the application of the * transform to the instance */ public AbstractRegion applyTransform(final Transform transform) { return buildNew(recurseTransform(getTree(false), transform)); } /** Recursively transform an inside/outside BSP-tree. * @param node current BSP tree node * @param transform transform to apply * @return a new tree */ @SuppressWarnings("unchecked") private BSPTree recurseTransform(final BSPTree node, final Transform transform) { if (node.getCut() == null) { return new BSPTree(node.getAttribute()); } final SubHyperplane sub = node.getCut(); final SubHyperplane tSub = ((AbstractSubHyperplane) sub).applyTransform(transform); BoundaryAttribute attribute = (BoundaryAttribute) node.getAttribute(); if (attribute != null) { final SubHyperplane tPO = (attribute.getPlusOutside() == null) ? null : ((AbstractSubHyperplane) attribute.getPlusOutside()).applyTransform(transform); final SubHyperplane tPI = (attribute.getPlusInside() == null) ? null : ((AbstractSubHyperplane) attribute.getPlusInside()).applyTransform(transform); attribute = new BoundaryAttribute(tPO, tPI); } return new BSPTree(tSub, recurseTransform(node.getPlus(), transform), recurseTransform(node.getMinus(), transform), attribute); } }