All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.truffleruby.core.MathNodes Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (c) 2013, 2024 Oracle and/or its affiliates. All rights reserved. This
 * code is released under a tri EPL/GPL/LGPL license. You can use it,
 * redistribute it and/or modify it under the terms of the:
 *
 * Eclipse Public License version 2.0, or
 * GNU General Public License version 2, or
 * GNU Lesser General Public License version 2.1.
 *
 * The contents of this file are subject to the Eclipse Public
 * License Version 2.0 (the "License"); you may not use this file
 * except in compliance with the License. You may obtain a copy of
 * the License at http://www.eclipse.org/legal/epl-v20.html
 *
 * Software distributed under the License is distributed on an "AS
 * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
 * implied. See the License for the specific language governing
 * rights and limitations under the License.
 *
 * Copyright (C) 2001 Chad Fowler 
 * Copyright (C) 2001-2002 Jan Arne Petersen 
 * Copyright (C) 2002 Benoit Cerrina 
 * Copyright (C) 2002-2004 Thomas E Enebo 
 * Copyright (C) 2004 Stefan Matthias Aust 
 *
 * Alternatively, the contents of this file may be used under the terms of
 * either of the GNU General Public License Version 2 or later (the "GPL"),
 * or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
 * in which case the provisions of the GPL or the LGPL are applicable instead
 * of those above. If you wish to allow use of your version of this file only
 * under the terms of either the GPL or the LGPL, and not to allow others to
 * use your version of this file under the terms of the EPL, indicate your
 * decision by deleting the provisions above and replace them with the notice
 * and other provisions required by the GPL or the LGPL. If you do not delete
 * the provisions above, a recipient may use your version of this file under
 * the terms of any one of the EPL, the GPL or the LGPL.
 */
package org.truffleruby.core;

import com.oracle.truffle.api.CompilerDirectives;
import com.oracle.truffle.api.profiles.InlinedConditionProfile;
import com.oracle.truffle.api.utilities.MathUtils;
import org.truffleruby.annotations.CoreMethod;
import org.truffleruby.builtins.CoreMethodArrayArgumentsNode;
import org.truffleruby.annotations.CoreModule;
import org.truffleruby.annotations.Primitive;
import org.truffleruby.builtins.PrimitiveArrayArgumentsNode;
import org.truffleruby.core.array.RubyArray;
import org.truffleruby.core.cast.ToFNode;
import org.truffleruby.core.numeric.BigIntegerOps;
import org.truffleruby.core.numeric.RubyBignum;
import org.truffleruby.language.NotProvided;
import org.truffleruby.language.control.RaiseException;
import org.truffleruby.language.objects.IsANode;

import com.oracle.truffle.api.CompilerDirectives.TruffleBoundary;
import com.oracle.truffle.api.dsl.Cached;
import com.oracle.truffle.api.dsl.Cached.Shared;
import com.oracle.truffle.api.dsl.Fallback;
import com.oracle.truffle.api.dsl.Specialization;
import com.oracle.truffle.api.profiles.BranchProfile;

@CoreModule("Math")
public abstract class MathNodes {

    @CoreMethod(names = "acos", isModuleFunction = true, required = 1)
    public abstract static class ACosNode extends SimpleMonadicMathNode {

        @Override
        protected double doFunction(double a) {
            if (a < -1.0 || a > 1.0) {
                exceptionProfile.enter();
                throw new RaiseException(getContext(), coreExceptions().mathDomainErrorAcos(this));
            }

            return Math.acos(a);
        }

    }

    @CoreMethod(names = "acosh", isModuleFunction = true, required = 1)
    public abstract static class ACosHNode extends SimpleMonadicMathNode {

        @Override
        protected double doFunction(double a) {
            if (a < 1) {
                exceptionProfile.enter();
                throw new RaiseException(getContext(), coreExceptions().mathDomainErrorAcosh(this));
            }
            return MathUtils.acosh(a);
        }

    }

    @CoreMethod(names = "asin", isModuleFunction = true, required = 1)
    public abstract static class ASinNode extends SimpleMonadicMathNode {

        @Override
        protected double doFunction(double a) {
            if (a < -1.0 || a > 1.0) {
                exceptionProfile.enter();
                throw new RaiseException(getContext(), coreExceptions().mathDomainErrorAsin(this));
            }

            return Math.asin(a);
        }

    }

    @CoreMethod(names = "asinh", isModuleFunction = true, required = 1)
    public abstract static class ASinHNode extends SimpleMonadicMathNode {

        @Override
        protected double doFunction(double a) {
            return MathUtils.asinh(a);
        }

    }

    @CoreMethod(names = "atan", isModuleFunction = true, required = 1)
    public abstract static class ATanNode extends SimpleMonadicMathNode {

        @Override
        protected double doFunction(double a) {
            return Math.atan(a);
        }

    }

    @CoreMethod(names = "atan2", isModuleFunction = true, required = 2)
    public abstract static class ATan2Node extends SimpleDyadicMathNode {

        @Override
        protected double doFunction(double a, double b) {
            return Math.atan2(a, b);
        }

    }

    @CoreMethod(names = "atanh", isModuleFunction = true, required = 1)
    public abstract static class ATanHNode extends SimpleMonadicMathNode {

        @Override
        protected double doFunction(double a) {
            if (a < -1.0 || a > 1.0) {
                exceptionProfile.enter();
                throw new RaiseException(getContext(), coreExceptions().mathDomainErrorAtanh(this));
            }

            return MathUtils.atanh(a);
        }

    }

    @CoreMethod(names = "cbrt", isModuleFunction = true, required = 1)
    public abstract static class CbRtNode extends SimpleMonadicMathNode {

        @Override
        protected double doFunction(double a) {
            return Math.cbrt(a);
        }

    }

    @CoreMethod(names = "cos", isModuleFunction = true, required = 1)
    public abstract static class CosNode extends SimpleMonadicMathNode {

        @Override
        protected double doFunction(double a) {
            return Math.cos(a);
        }

    }

    @CoreMethod(names = "cosh", isModuleFunction = true, required = 1)
    public abstract static class CosHNode extends SimpleMonadicMathNode {

        @Override
        protected double doFunction(double a) {
            return Math.cosh(a);
        }

    }

    @CoreMethod(names = "erf", isModuleFunction = true, required = 1)
    public abstract static class ErfNode extends SimpleMonadicMathNode {

        @Override
        protected double doFunction(double a) {
            final double y = Math.abs(a);

            if (y <= 1.49012e-08) {
                return 2 * a / 1.77245385090551602729816748334;
            } else if (y <= 1) {
                return a * (1 + chebylevSerie(2 * a * a - 1, ERFC_COEF));
            } else if (y < 6.013687357) {
                return sign(1 - ErfcNode.erfc(y), a);
            } else if (Double.isNaN(y)) {
                return Double.NaN;
            } else {
                return sign(1, a);
            }
        }

    }

    @CoreMethod(names = "erfc", isModuleFunction = true, required = 1)
    public abstract static class ErfcNode extends SimpleMonadicMathNode {

        @Override
        public double doFunction(double a) {
            return erfc(a);
        }

        public static double erfc(double a) {
            final double y = Math.abs(a);

            if (a <= -6.013687357) {
                return 2;
            } else if (y < 1.49012e-08) {
                return 1 - 2 * a / 1.77245385090551602729816748334;
            } else {
                double ysq = y * y;
                if (y < 1) {
                    return 1 - a * (1 + chebylevSerie(2 * ysq - 1, ERFC_COEF));
                } else if (y <= 4.0) {
                    double result = Math.exp(-ysq) / y * (0.5 + chebylevSerie((8.0 / ysq - 5.0) / 3.0, ERFC2_COEF));
                    if (a < 0) {
                        result = 2.0 - result;
                    }
                    if (a < 0) {
                        result = 2.0 - result;
                    }
                    if (a < 0) {
                        result = 2.0 - result;
                    }
                    return result;
                } else {
                    double result = Math.exp(-ysq) / y * (0.5 + chebylevSerie(8.0 / ysq - 1, ERFCC_COEF));
                    if (a < 0) {
                        result = 2.0 - result;
                    }
                    return result;
                }
            }
        }

    }

    @CoreMethod(names = "exp", isModuleFunction = true, required = 1)
    public abstract static class ExpNode extends SimpleMonadicMathNode {

        @Override
        protected double doFunction(double a) {
            return Math.exp(a);
        }

    }

    @Primitive(name = "math_frexp")
    public abstract static class FrExpNode extends PrimitiveArrayArgumentsNode {

        private static final long SIGN_MASK = 1L << 63;
        private static final long BIASED_EXP_MASK = 0x7ffL << 52;
        private static final long MANTISSA_MASK = ~(SIGN_MASK | BIASED_EXP_MASK);

        @Specialization
        RubyArray frexp(double a) {
            double mantissa = a;
            long exponent = 0;

            if (Double.isFinite(mantissa) && mantissa != 0.0) {

                /* Double precision floating pointer numbers are represented as a sign, an exponent (which is biased by
                 * 1023, and then a remaining 52 bits of mantissa. The mantissa has an implicit 53 bit which is not
                 * stored and is always 1. There are two exceptions to this. Non-finite numbers have all the bits in
                 * their exponent set, and if none of the exponent bits are set then the number is a signed zero, or
                 * subnormal, and the implicit 53 bit is 0. See
                 * https://en.wikipedia.org/wiki/Double-precision_floating-point_format for further details. */

                final long bits = Double.doubleToRawLongBits(a);
                long biasedExp = ((bits & BIASED_EXP_MASK) >> 52);
                long mantissaBits = bits & MANTISSA_MASK;
                final long signBits = bits & SIGN_MASK;
                if (biasedExp == 0) {
                    // Sub normal cases are a little special.
                    // Find the most significant bit in the mantissa
                    final int lz = Long.numberOfLeadingZeros(mantissaBits);
                    // Shift the mantissa to make it a normal mantissa
                    // and mask off the leading bit (now the implied 53 bit of the mantissa)..
                    mantissaBits = (mantissaBits << (lz - 11)) & MANTISSA_MASK;
                    // Adjust the exponent to reflect this.
                    biasedExp = biasedExp + (lz - 11);
                }
                exponent = biasedExp - 1022;
                mantissa = Double.longBitsToDouble(signBits | mantissaBits | 0x3fe0000000000000L);
            }

            return createArray(new Object[]{ mantissa, exponent });
        }

        @Fallback
        Object frexp(Object a) {
            return FAILURE;
        }

    }

    @CoreMethod(names = "gamma", isModuleFunction = true, required = 1)
    public abstract static class GammaNode extends SimpleMonadicMathNode {

        @Override
        protected double doFunction(double a) {
            if (a == -1) {
                exceptionProfile.enter();
                throw new RaiseException(getContext(), coreExceptions().mathDomainErrorGamma(this));
            }

            if (Double.isNaN(a)) {
                return Double.NaN;
            }

            if (Double.isInfinite(a)) {
                if (a > 0) {
                    return Double.POSITIVE_INFINITY;
                } else {
                    exceptionProfile.enter();
                    throw new RaiseException(getContext(), coreExceptions().mathDomainErrorGamma(this));
                }
            }

            double result = nemes_gamma(a);

            if (Double.isInfinite(result)) {
                if (a < 0) {
                    result = Double.NaN;
                } else {
                    if (a == 0 && 1 / a < 0) {
                        result = Double.NEGATIVE_INFINITY;
                    } else {
                        result = Double.POSITIVE_INFINITY;
                    }
                }
            }

            if (Double.isNaN(a)) {
                exceptionProfile.enter();
                throw new RaiseException(getContext(), coreExceptions().mathDomainErrorGamma(this));
            }

            return result;
        }

    }

    @Primitive(name = "math_hypot")
    public abstract static class HypotNode extends PrimitiveArrayArgumentsNode {

        @Specialization
        double doFunction(double a, double b) {
            return Math.hypot(a, b);
        }

    }

    @Primitive(name = "math_ldexp", lowerFixnum = 1)
    public abstract static class LdexpNode extends PrimitiveArrayArgumentsNode {

        @Specialization
        double ldexp(double a, int b) {
            return a * Math.pow(2, b);
        }

        @Fallback
        Object ldexp(Object a, Object b) {
            return FAILURE;
        }

    }

    @CoreMethod(names = "lgamma", isModuleFunction = true, required = 1)
    public abstract static class LGammaNode extends CoreMethodArrayArgumentsNode {

        private final BranchProfile exceptionProfile = BranchProfile.create();

        @Specialization
        RubyArray lgamma(int a) {
            return lgamma((double) a);
        }

        @Specialization
        RubyArray lgamma(long a) {
            return lgamma((double) a);
        }

        @Specialization
        RubyArray lgamma(RubyBignum a) {
            return lgamma(BigIntegerOps.doubleValue(a));
        }

        @Specialization
        RubyArray lgamma(double a) {
            if (a < 0 && Double.isInfinite(a)) {
                exceptionProfile.enter();
                throw new RaiseException(getContext(), coreExceptions().mathDomainErrorLog2(this));
            }

            final NemesLogGamma l = new NemesLogGamma(a);

            return createArray(new Object[]{ l.value, l.sign });
        }

        @Fallback
        RubyArray lgamma(Object a,
                @Cached IsANode isANode,
                @Cached ToFNode toFNode) {
            if (!isANode.executeIsA(a, coreLibrary().numericClass)) {
                exceptionProfile.enter();
                throw new RaiseException(getContext(), coreExceptions().typeErrorCantConvertInto(a, "Float", this));
            }

            return lgamma(toFNode.executeToDouble(a));
        }

    }

    @CoreMethod(names = "log", isModuleFunction = true, required = 1, optional = 1)
    public abstract static class LogNode extends SimpleDyadicMathNode {

        @Specialization
        double function(int a, NotProvided b) {
            return doFunction(a);
        }

        @Specialization
        double function(long a, NotProvided b) {
            return doFunction(a);
        }

        @Specialization
        double function(RubyBignum a, NotProvided b) {
            return doFunction(BigIntegerOps.doubleValue(a));
        }

        @Specialization
        double function(double a, NotProvided b) {
            return doFunction(a);
        }

        @Specialization(guards = { "!isRubyBignum(a)", "!isImplicitLongOrDouble(a)" })
        double function(Object a, NotProvided b,
                @Cached IsANode isANode,
                @Cached ToFNode toFNode) {
            if (!isANode.executeIsA(a, coreLibrary().numericClass)) {
                exceptionProfile.enter();
                throw new RaiseException(getContext(), coreExceptions().typeErrorCantConvertInto(a, "Float", this));
            }
            return doFunction(toFNode.executeToDouble(a));
        }

        private double doFunction(double a) {
            if (a < 0) {
                exceptionProfile.enter();
                throw new RaiseException(getContext(), coreExceptions().mathDomainErrorLog(this));
            }

            return Math.log(a);
        }

        @Override
        protected double doFunction(double a, double b) {
            if (a < 0) {
                exceptionProfile.enter();
                throw new RaiseException(getContext(), coreExceptions().mathDomainErrorLog(this));
            }

            return Math.log(a) / Math.log(b);
        }

    }

    @CoreMethod(names = "log10", isModuleFunction = true, required = 1)
    public abstract static class Log10Node extends SimpleMonadicMathNode {

        @Override
        protected double doFunction(double a) {
            if (a < 0) {
                exceptionProfile.enter();
                throw new RaiseException(getContext(), coreExceptions().mathDomainErrorLog10(this));
            }

            return Math.log10(a);
        }

    }

    @CoreMethod(names = "log2", isModuleFunction = true, required = 1)
    public abstract static class Log2Node extends SimpleMonadicMathNode {

        private final double LOG2 = Math.log(2);

        @Override
        protected double doFunction(double a) {
            if (a < 0) {
                exceptionProfile.enter();
                throw new RaiseException(getContext(), coreExceptions().mathDomainErrorLog2(this));
            }

            return Math.log(a) / LOG2;
        }

    }

    @Primitive(name = "min")
    public abstract static class MinNode extends PrimitiveArrayArgumentsNode {

        @Specialization
        int min(int a, int b,
                @Cached @Shared InlinedConditionProfile profile) {
            return profile.profile(this, a < b) ? a : b;
        }

        @Specialization
        long min(long a, long b,
                @Cached @Shared InlinedConditionProfile profile) {
            return profile.profile(this, a < b) ? a : b;
        }

    }

    @Primitive(name = "max")
    public abstract static class MaxNode extends PrimitiveArrayArgumentsNode {

        @Specialization
        int max(int a, int b,
                @Cached @Shared InlinedConditionProfile profile) {
            return profile.profile(this, a > b) ? a : b;
        }

        @Specialization
        long max(long a, long b,
                @Cached @Shared InlinedConditionProfile profile) {
            return profile.profile(this, a > b) ? a : b;
        }

    }

    @CoreMethod(names = "sin", isModuleFunction = true, required = 1)
    public abstract static class SinNode extends SimpleMonadicMathNode {

        @Override
        protected double doFunction(double a) {
            return Math.sin(a);
        }

    }

    @CoreMethod(names = "sinh", isModuleFunction = true, required = 1)
    public abstract static class SinHNode extends SimpleMonadicMathNode {

        @Override
        protected double doFunction(double a) {
            return Math.sinh(a);
        }

    }

    @CoreMethod(names = "tan", isModuleFunction = true, required = 1)
    public abstract static class TanNode extends SimpleMonadicMathNode {

        @Override
        protected double doFunction(double a) {
            return Math.tan(a);
        }

    }

    @CoreMethod(names = "tanh", isModuleFunction = true, required = 1)
    public abstract static class TanHNode extends SimpleMonadicMathNode {

        @Override
        protected double doFunction(double a) {
            return Math.tanh(a);
        }

    }

    @CoreMethod(names = "sqrt", isModuleFunction = true, required = 1)
    public abstract static class SqrtNode extends SimpleMonadicMathNode {

        @Override
        protected double doFunction(double a) {
            if (a < 0.0) {
                exceptionProfile.enter();
                throw new RaiseException(getContext(), coreExceptions().mathDomainError("sqrt", this));
            }
            return Math.sqrt(a);
        }

    }

    protected abstract static class SimpleMonadicMathNode extends CoreMethodArrayArgumentsNode {

        protected final BranchProfile exceptionProfile = BranchProfile.create();

        // Must be implemented because we can't prevent Truffle from generating the useless SimpleMonadicClassGen.
        protected double doFunction(double a) {
            throw CompilerDirectives.shouldNotReachHere();
        }

        @Specialization
        double function(int a) {
            return doFunction(a);
        }

        @Specialization
        double function(long a) {
            return doFunction(a);
        }

        @Specialization
        double function(RubyBignum a) {
            return doFunction(BigIntegerOps.doubleValue(a));
        }

        @Specialization
        double function(double a) {
            return doFunction(a);
        }

        @Fallback
        double function(Object a,
                @Cached IsANode isANode,
                @Cached ToFNode toFNode) {
            if (!isANode.executeIsA(a, coreLibrary().numericClass)) {
                exceptionProfile.enter();
                throw new RaiseException(getContext(), coreExceptions().typeErrorCantConvertInto(a, "Float", this));
            }

            return doFunction(toFNode.executeToDouble(a));
        }

    }

    protected abstract static class SimpleDyadicMathNode extends CoreMethodArrayArgumentsNode {

        protected final BranchProfile exceptionProfile = BranchProfile.create();

        // Must be implemented because we can't prevent Truffle from generating the useless SimpleDyadicClassGen.
        protected double doFunction(double a, double b) {
            throw CompilerDirectives.shouldNotReachHere();
        }

        @Specialization
        double function(int a, int b) {
            return doFunction(a, b);
        }

        @Specialization
        double function(int a, long b) {
            return doFunction(a, b);
        }

        @Specialization
        double function(int a, RubyBignum b) {
            return doFunction(a, BigIntegerOps.doubleValue(b));
        }

        @Specialization
        double function(int a, double b) {
            return doFunction(a, b);
        }

        @Specialization
        double function(long a, int b) {
            return doFunction(a, b);
        }

        @Specialization
        double function(long a, long b) {
            return doFunction(a, b);
        }

        @Specialization
        double function(long a, RubyBignum b) {
            return doFunction(a, BigIntegerOps.doubleValue(b));
        }

        @Specialization
        double function(long a, double b) {
            return doFunction(a, b);
        }

        @Specialization
        double function(RubyBignum a, int b) {
            return doFunction(BigIntegerOps.doubleValue(a), b);
        }

        @Specialization
        double function(RubyBignum a, long b) {
            return doFunction(BigIntegerOps.doubleValue(a), b);
        }

        @Specialization
        double function(RubyBignum a, RubyBignum b) {
            return doFunction(BigIntegerOps.doubleValue(a), BigIntegerOps.doubleValue(b));
        }

        @Specialization
        double function(RubyBignum a, double b) {
            return doFunction(BigIntegerOps.doubleValue(a), b);
        }

        @Specialization
        double function(double a, int b) {
            return doFunction(a, b);
        }

        @Specialization
        double function(double a, long b) {
            return doFunction(a, b);
        }

        @Specialization
        double function(double a, RubyBignum b) {
            return doFunction(a, BigIntegerOps.doubleValue(b));
        }

        @Specialization
        double function(double a, double b) {
            return doFunction(a, b);
        }

        @Fallback
        double function(Object a, Object b,
                @Cached IsANode isANode,
                @Cached ToFNode floatANode,
                @Cached ToFNode floatBNode) {
            if (!(isANode.executeIsA(a, coreLibrary().numericClass) &&
                    isANode.executeIsA(b, coreLibrary().numericClass))) {
                exceptionProfile.enter();
                throw new RaiseException(getContext(), coreExceptions().typeErrorCantConvertInto(a, "Float", this));
            }

            return doFunction(floatANode.executeToDouble(a), floatBNode.executeToDouble(b));
        }

    }

    public static final double[] ERFC_COEF = {
            -.490461212346918080399845440334e-1,
            -.142261205103713642378247418996e0,
            .100355821875997955757546767129e-1,
            -.576876469976748476508270255092e-3,
            .274199312521960610344221607915e-4,
            -.110431755073445076041353812959e-5,
            .384887554203450369499613114982e-7,
            -.118085825338754669696317518016e-8,
            .323342158260509096464029309534e-10,
            -.799101594700454875816073747086e-12,
            .179907251139614556119672454866e-13,
            -.371863548781869263823168282095e-15,
            .710359900371425297116899083947e-17,
            -.126124551191552258324954248533e-18
    };

    public static final double[] ERFC2_COEF = {
            -.69601346602309501127391508262e-1,
            -.411013393626208934898221208467e-1,
            .391449586668962688156114370524e-2,
            -.490639565054897916128093545077e-3,
            .715747900137703638076089414183e-4,
            -.115307163413123283380823284791e-4,
            .199467059020199763505231486771e-5,
            -.364266647159922287393611843071e-6,
            .694437261000501258993127721463e-7,
            -.137122090210436601953460514121e-7,
            .278838966100713713196386034809e-8,
            -.581416472433116155186479105032e-9,
            .123892049175275318118016881795e-9,
            -.269063914530674343239042493789e-10,
            .594261435084791098244470968384e-11,
            -.133238673575811957928775442057e-11,
            .30280468061771320171736972433e-12,
            -.696664881494103258879586758895e-13,
            .162085454105392296981289322763e-13,
            -.380993446525049199987691305773e-14,
            .904048781597883114936897101298e-15,
            -.2164006195089607347809812047e-15,
            .522210223399585498460798024417e-16,
            -.126972960236455533637241552778e-16,
            .310914550427619758383622741295e-17,
            -.766376292032038552400956671481e-18,
            .190081925136274520253692973329e-18
    };

    public static final double[] ERFCC_COEF = {
            .715179310202924774503697709496e-1,
            -.265324343376067157558893386681e-1,
            .171115397792085588332699194606e-2,
            -.163751663458517884163746404749e-3,
            .198712935005520364995974806758e-4,
            -.284371241276655508750175183152e-5,
            .460616130896313036969379968464e-6,
            -.822775302587920842057766536366e-7,
            .159214187277090112989358340826e-7,
            -.329507136225284321486631665072e-8,
            .72234397604005554658126115389e-9,
            -.166485581339872959344695966886e-9,
            .401039258823766482077671768814e-10,
            -.100481621442573113272170176283e-10,
            .260827591330033380859341009439e-11,
            -.699111056040402486557697812476e-12,
            .192949233326170708624205749803e-12,
            -.547013118875433106490125085271e-13,
            .158966330976269744839084032762e-13,
            -.47268939801975548392036958429e-14,
            .14358733767849847867287399784e-14,
            -.444951056181735839417250062829e-15,
            .140481088476823343737305537466e-15,
            -.451381838776421089625963281623e-16,
            .147452154104513307787018713262e-16,
            -.489262140694577615436841552532e-17,
            .164761214141064673895301522827e-17,
            -.562681717632940809299928521323e-18,
            .194744338223207851429197867821e-18
    };

    public static double chebylevSerie(double x, double coef[]) {
        double b0, b1, b2, twox;
        int i;
        b1 = 0.0;
        b0 = 0.0;
        b2 = 0.0;
        twox = 2.0 * x;
        for (i = coef.length - 1; i >= 0; i--) {
            b2 = b1;
            b1 = b0;
            b0 = twox * b1 - b2 + coef[i];
        }
        return 0.5 * (b0 - b2);
    }

    public static double sign(double x, double y) {
        double abs = ((x < 0) ? -x : x);
        return (y < 0.0) ? -abs : abs;
    }

    @TruffleBoundary
    public static double nemes_gamma(double x) {
        double int_part = (int) x;

        if ((x - int_part) == 0.0 && 0 < int_part && int_part <= FACTORIAL.length) {
            return FACTORIAL[(int) int_part - 1];
        }
        NemesLogGamma l = new NemesLogGamma(x);
        return l.sign * Math.exp(l.value);
    }

    public static final class NemesLogGamma {
        public final double value;
        public final double sign;

        @TruffleBoundary
        public NemesLogGamma(double x) {
            if (Double.isInfinite(x)) {
                value = Double.POSITIVE_INFINITY;
                sign = 1;
                return;
            }

            if (Double.isNaN(x)) {
                value = Double.NaN;
                sign = 1;
                return;
            }

            double int_part = (int) x;
            sign = signum(x, int_part);
            if ((x - int_part) == 0.0 && 0 < int_part && int_part <= FACTORIAL.length) {
                value = Math.log(FACTORIAL[(int) int_part - 1]);
            } else if (x < 10) {
                double rising_factorial = 1;
                for (int i = 0; i < (int) Math.abs(x) - int_part + 10; i++) {
                    rising_factorial *= (x + i);
                }
                NemesLogGamma l = new NemesLogGamma(x + (int) Math.abs(x) - int_part + 10);
                value = l.value - Math.log(Math.abs(rising_factorial));
            } else {
                double temp = 0.0;
                for (int i = 0; i < NEMES_GAMMA_COEFF.length; i++) {
                    temp += NEMES_GAMMA_COEFF[i] * 1.0 / Math.pow(x, i);
                }

                value = x * (Math.log(x) - 1 + Math.log(temp)) +
                        (Math.log(2) + Math.log(Math.PI) - Math.log(x)) / 2.0;
            }
        }

        private static int signum(final double x, final double int_part) {
            return ((int_part % 2 == 0 && (x - int_part) != 0.0 && (x < 0)) || negZero(x)) ? -1 : 1;
        }

        private static boolean negZero(final double x) {
            return x == 0.0 && Double.doubleToRawLongBits(x) != 0; // detect -0.0 (since in Java: `0.0 == -0.0`)
        }

    }

    private static final double FACTORIAL[] = {
            /* 0! */ 1.0,
            /* 1! */ 1.0,
            /* 2! */ 2.0,
            /* 3! */ 6.0,
            /* 4! */ 24.0,
            /* 5! */ 120.0,
            /* 6! */ 720.0,
            /* 7! */ 5040.0,
            /* 8! */ 40320.0,
            /* 9! */ 362880.0,
            /* 10! */ 3628800.0,
            /* 11! */ 39916800.0,
            /* 12! */ 479001600.0,
            /* 13! */ 6227020800.0,
            /* 14! */ 87178291200.0,
            /* 15! */ 1307674368000.0,
            /* 16! */ 20922789888000.0,
            /* 17! */ 355687428096000.0,
            /* 18! */ 6402373705728000.0,
            /* 19! */ 121645100408832000.0,
            /* 20! */ 2432902008176640000.0,
            /* 21! */ 51090942171709440000.0,
            /* 22! */ 1124000727777607680000.0
    };

    private static final double NEMES_GAMMA_COEFF[] = {
            1.00000000000000000000000000000000000,
            0,
            0.08333333333333333333333333333333333,
            0,
            0.00069444444444444444444444444444444,
            0,
            0.00065861992945326278659611992945326,
            0,
            -0.00053287817827748383303938859494415,
            0,
            0.00079278588700608376534302460228386,
            0,
            -0.00184758189322033028400606295961969,
            0,
            0.00625067824784941846328836824623616,
            0,
            -0.02901710246301150993444701506844402,
            0,
            0.17718457242491308890302832366796470,
            0,
            -1.37747681703993534399676348903067470
    };

}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy