
com.oracle.truffle.api.utilities.MathUtils Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of truffle-api Show documentation
Show all versions of truffle-api Show documentation
Truffle is a multi-language framework for executing dynamic languages
that achieves high performance when combined with Graal.
/*
* Copyright (c) 2024, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* The Universal Permissive License (UPL), Version 1.0
*
* Subject to the condition set forth below, permission is hereby granted to any
* person obtaining a copy of this software, associated documentation and/or
* data (collectively the "Software"), free of charge and under any and all
* copyright rights in the Software, and any and all patent rights owned or
* freely licensable by each licensor hereunder covering either (i) the
* unmodified Software as contributed to or provided by such licensor, or (ii)
* the Larger Works (as defined below), to deal in both
*
* (a) the Software, and
*
* (b) any piece of software and/or hardware listed in the lrgrwrks.txt file if
* one is included with the Software each a "Larger Work" to which the Software
* is contributed by such licensors),
*
* without restriction, including without limitation the rights to copy, create
* derivative works of, display, perform, and distribute the Software and make,
* use, sell, offer for sale, import, export, have made, and have sold the
* Software and the Larger Work(s), and to sublicense the foregoing rights on
* either these or other terms.
*
* This license is subject to the following condition:
*
* The above copyright notice and either this complete permission notice or at a
* minimum a reference to the UPL must be included in all copies or substantial
* portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
package com.oracle.truffle.api.utilities;
import com.oracle.truffle.api.CompilerDirectives.TruffleBoundary;
/**
* This class contains mathematical methods that are not already provided by {@link java.lang.Math}
* that are generally useful for language implementations.
*
* @since 24.1
*/
public final class MathUtils {
private static final double LN_2 = 6.93147180559945286227e-01; // Math.log(2)
private static final double TWO_POW_M28 = 0x1.0p-28; // 2**-28
private static final double TWO_POW_P28 = 0x1.0p+28; // 2**28
private MathUtils() {
}
/**
* Computes the inverse (area) hyperbolic sine (asinh) of a {@code double} value.
*
*
* {@code
* asinh(x); derived from fdlibm (s_asinh.c)
* Method :
* Based on
* asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
* we have
* asinh(x) := x if 1+x*x=1,
* := sign(x)*(log(x)+ln2)) for large |x|, else
* := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
* := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
* }
*
*
* @param x The number whose inverse hyperbolic sine is to be returned.
* @return The inverse hyperbolic sine of {@code x}.
* @since 24.1
*/
@TruffleBoundary(allowInlining = true)
public static double asinh(double x) {
if (!Double.isFinite(x)) { /* x is inf or NaN */
return x + x;
}
double ax = Math.abs(x);
if (ax < TWO_POW_M28) { /* |x| < 2**-28 */
return x; /* (huge + x); return x inexact except 0 */
}
double w;
if (ax > TWO_POW_P28) { /* |x| > 2**28 */
w = Math.log(ax) + LN_2;
} else if (ax > 2.0) { /* 2**28 > |x| > 2.0 */
w = Math.log(2.0 * ax + 1.0 / (Math.sqrt(x * x + 1.0) + ax));
} else { /* 2.0 >= |x| > 2**-28 */
double t = x * x;
w = Math.log1p(ax + t / (1.0 + Math.sqrt(1.0 + t)));
}
return Math.copySign(w, x);
}
/**
* Computes the inverse (area) hyperbolic cosine (acosh) of a {@code double} value.
*
*
* {@code
* __ieee754_acosh(x); derived from fdlibm (e_acosh.c)
* Method :
* Based on
* acosh(x) = log [ x + sqrt(x*x-1) ]
* we have
* acosh(x) := log(x)+ln2, if x is large; else
* acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
* acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
*
* Special cases:
* acosh(x) is NaN with signal if x<1.
* acosh(NaN) is NaN without signal.
* }
*
*
* @param x The number whose inverse hyperbolic cosine is to be returned.
* @return The inverse hyperbolic cosine of {@code x}.
* @since 24.1
*/
@TruffleBoundary(allowInlining = true)
public static double acosh(double x) {
if (x < 1.0) { /* x < 1 */
return (x - x) / (x - x); /* NaN */
} else if (x >= TWO_POW_P28) { /* x >= 2**28 */
if (!Double.isFinite(x)) { /* x is inf or NaN */
return x + x;
} else {
return Math.log(x) + LN_2; /* acosh(huge) = log(2x) */
}
} else if (x == 1.0) {
return 0.0; /* acosh(1) = 0 */
} else if (x > 2.0) { /* 2**28 > x > 2 */
double t = x * x;
return Math.log(2.0 * x - 1.0 / (x + Math.sqrt(t - 1.0)));
} else { /* 1 < x <= 2 */
double t = x - 1.0;
return Math.log1p(t + Math.sqrt(2.0 * t + t * t));
}
}
/**
* Computes the inverse (area) hyperbolic tangent (atanh) of a {@code double} value.
*
*
* {@code
* __ieee754_atanh(x); derived from fdlibm (e_atanh.c)
* Method :
* 1.Reduced x to positive by atanh(-x) = -atanh(x)
* 2.For x>=0.5
* 1 2x x
* atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
* 2 1 - x 1 - x
*
* For x<0.5
* atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
*
* Special cases:
* atanh(x) is NaN if |x| > 1 with signal;
* atanh(NaN) is that NaN with no signal;
* atanh(+-1) is +-INF with signal.
* }
*
*
* @param x The number whose inverse hyperbolic tangent is to be returned.
* @return The inverse hyperbolic tangent of {@code x}.
* @since 24.1
*/
@TruffleBoundary(allowInlining = true)
public static double atanh(double x) {
double ax = Math.abs(x);
if (ax > 1.0) { /* |x| > 1 */
return (x - x) / (x - x); /* NaN */
}
if (ax == 1.0) { /* x == +/-1. */
return x / 0; /* inf */
}
if (ax < TWO_POW_M28) { /* x < 2**-28 */
return x; /* (huge + x); return x */
}
double t;
if (ax < 0.5) { /* |x| < 0.5 */
t = ax + ax;
t = 0.5 * Math.log1p(t + t * ax / (1.0 - ax));
} else {
t = 0.5 * Math.log1p((ax + ax) / (1.0 - ax));
}
return Math.copySign(t, x);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy