![JAR search and dependency download from the Maven repository](/logo.png)
com.oracle.truffle.runtime.hotspot.HotSpotTruffleRuntime Maven / Gradle / Ivy
/*
* Copyright (c) 2013, 2023, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* The Universal Permissive License (UPL), Version 1.0
*
* Subject to the condition set forth below, permission is hereby granted to any
* person obtaining a copy of this software, associated documentation and/or
* data (collectively the "Software"), free of charge and under any and all
* copyright rights in the Software, and any and all patent rights owned or
* freely licensable by each licensor hereunder covering either (i) the
* unmodified Software as contributed to or provided by such licensor, or (ii)
* the Larger Works (as defined below), to deal in both
*
* (a) the Software, and
*
* (b) any piece of software and/or hardware listed in the lrgrwrks.txt file if
* one is included with the Software each a "Larger Work" to which the Software
* is contributed by such licensors),
*
* without restriction, including without limitation the rights to copy, create
* derivative works of, display, perform, and distribute the Software and make,
* use, sell, offer for sale, import, export, have made, and have sold the
* Software and the Larger Work(s), and to sublicense the foregoing rights on
* either these or other terms.
*
* This license is subject to the following condition:
*
* The above copyright notice and either this complete permission notice or at a
* minimum a reference to the UPL must be included in all copies or substantial
* portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
package com.oracle.truffle.runtime.hotspot;
import java.lang.ref.Reference;
import java.lang.reflect.Field;
import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;
import java.util.Arrays;
import java.util.List;
import java.util.Objects;
import java.util.function.Consumer;
import com.oracle.truffle.api.CompilerDirectives;
import com.oracle.truffle.api.CompilerDirectives.TruffleBoundary;
import com.oracle.truffle.api.frame.FrameInstance;
import com.oracle.truffle.api.impl.AbstractFastThreadLocal;
import com.oracle.truffle.api.impl.ThreadLocalHandshake;
import com.oracle.truffle.api.nodes.RootNode;
import com.oracle.truffle.compiler.TruffleCompilable;
import com.oracle.truffle.compiler.TruffleCompilationSupport;
import com.oracle.truffle.compiler.TruffleCompiler;
import com.oracle.truffle.compiler.hotspot.HotSpotTruffleCompiler;
import com.oracle.truffle.runtime.BackgroundCompileQueue;
import com.oracle.truffle.runtime.CompilationTask;
import com.oracle.truffle.runtime.EngineData;
import com.oracle.truffle.runtime.OptimizedCallTarget;
import com.oracle.truffle.runtime.OptimizedOSRLoopNode;
import com.oracle.truffle.runtime.OptimizedTruffleRuntime;
import com.oracle.truffle.runtime.TruffleCallBoundary;
import com.oracle.truffle.runtime.hotspot.libgraal.LibGraalTruffleCompilationSupport;
import jdk.internal.access.JavaLangAccess;
import jdk.internal.access.SharedSecrets;
import jdk.vm.ci.code.InstalledCode;
import jdk.vm.ci.code.stack.StackIntrospection;
import jdk.vm.ci.common.JVMCIError;
import jdk.vm.ci.hotspot.HotSpotConstantReflectionProvider;
import jdk.vm.ci.hotspot.HotSpotJVMCIRuntime;
import jdk.vm.ci.hotspot.HotSpotMetaAccessProvider;
import jdk.vm.ci.hotspot.HotSpotObjectConstant;
import jdk.vm.ci.hotspot.HotSpotResolvedJavaMethod;
import jdk.vm.ci.hotspot.HotSpotResolvedObjectType;
import jdk.vm.ci.hotspot.HotSpotSpeculationLog;
import jdk.vm.ci.hotspot.HotSpotVMConfigAccess;
import jdk.vm.ci.meta.JavaConstant;
import jdk.vm.ci.meta.MetaAccessProvider;
import jdk.vm.ci.meta.ResolvedJavaField;
import jdk.vm.ci.meta.ResolvedJavaMethod;
import jdk.vm.ci.meta.ResolvedJavaType;
import jdk.vm.ci.meta.SpeculationLog;
import jdk.vm.ci.runtime.JVMCI;
import sun.misc.Unsafe;
/**
* HotSpot specific implementation of a Graal-enabled Truffle runtime.
*
* This class contains functionality for interfacing with a HotSpot-based Truffle compiler,
* independent of where the compiler resides (i.e., co-located in the HotSpot heap or running in a
* native-image shared library).
*/
public final class HotSpotTruffleRuntime extends OptimizedTruffleRuntime {
static final int JAVA_SPEC = Runtime.version().feature();
static final sun.misc.Unsafe UNSAFE = getUnsafe();
private static final JavaLangAccess JAVA_LANG_ACCESS = SharedSecrets.getJavaLangAccess();
private static final long THREAD_EETOP_OFFSET;
static {
try {
THREAD_EETOP_OFFSET = HotSpotTruffleRuntime.getObjectFieldOffset(Thread.class.getDeclaredField("eetop"));
} catch (Exception e) {
throw new InternalError(e);
}
}
private static Unsafe getUnsafe() {
try {
return Unsafe.getUnsafe();
} catch (SecurityException e) {
}
try {
Field theUnsafeInstance = Unsafe.class.getDeclaredField("theUnsafe");
theUnsafeInstance.setAccessible(true);
return (Unsafe) theUnsafeInstance.get(Unsafe.class);
} catch (Exception e) {
throw new RuntimeException("exception while trying to get Unsafe.theUnsafe via reflection:", e);
}
}
/**
* Contains lazily computed data such as the compilation queue and helper for stack
* introspection.
*/
static final class Lazy extends BackgroundCompileQueue {
StackIntrospection stackIntrospection;
Lazy(HotSpotTruffleRuntime runtime) {
super(runtime);
runtime.installDefaultListeners();
}
@Override
protected void notifyIdleCompilerThread() {
TruffleCompiler compiler = ((HotSpotTruffleRuntime) runtime).truffleCompiler;
// truffleCompiler should never be null outside unit-tests, this check avoids transient
// failures.
if (compiler != null) {
((HotSpotTruffleCompiler) compiler).purgePartialEvaluationCaches();
}
}
}
private int pendingTransferToInterpreterOffset = -1;
private boolean traceTransferToInterpreter;
private Boolean profilingEnabled;
private volatile Lazy lazy;
private Lazy lazy() {
if (lazy == null) {
synchronized (this) {
if (lazy == null) {
lazy = new Lazy(this);
}
}
}
return lazy;
}
private volatile CompilationTask initializationTask;
private volatile boolean truffleCompilerInitialized;
private volatile Throwable truffleCompilerInitializationException;
private final HotSpotVMConfigAccess vmConfigAccess;
private final int jvmciReservedLongOffset0;
public HotSpotTruffleRuntime(TruffleCompilationSupport compilationSupport) {
super(compilationSupport, Arrays.asList(HotSpotOptimizedCallTarget.class, InstalledCode.class, HotSpotThreadLocalHandshake.class, HotSpotTruffleRuntime.class));
installCallBoundaryMethods(null);
this.vmConfigAccess = new HotSpotVMConfigAccess(HotSpotJVMCIRuntime.runtime().getConfigStore());
int longOffset;
try {
longOffset = vmConfigAccess.getFieldOffset("JavaThread::_jvmci_reserved0", Integer.class, "jlong", -1);
} catch (NoSuchMethodError error) {
throw CompilerDirectives.shouldNotReachHere("This JDK does not have JavaThread::_jvmci_reserved0", error);
} catch (JVMCIError error) {
try {
// the type of the jvmci reserved field might still be old.
longOffset = vmConfigAccess.getFieldOffset("JavaThread::_jvmci_reserved0", Integer.class, "intptr_t*", -1);
} catch (NoSuchMethodError e) {
e.initCause(error);
throw CompilerDirectives.shouldNotReachHere("This JDK does not have JavaThread::_jvmci_reserved0", e);
}
}
if (longOffset == -1) {
throw CompilerDirectives.shouldNotReachHere("This JDK does not have JavaThread::_jvmci_reserved0");
}
this.jvmciReservedLongOffset0 = longOffset;
int jvmciReservedReference0Offset = vmConfigAccess.getFieldOffset("JavaThread::_jvmci_reserved_oop0", Integer.class, "oop", -1);
if (jvmciReservedReference0Offset == -1) {
throw CompilerDirectives.shouldNotReachHere("This JDK does not have JavaThread::_jvmci_reserved_oop0");
}
installReservedOopMethods(null);
}
public int getJVMCIReservedLongOffset0() {
return jvmciReservedLongOffset0;
}
@Override
public ThreadLocalHandshake getThreadLocalHandshake() {
return HotSpotThreadLocalHandshake.SINGLETON;
}
@Override
protected StackIntrospection getStackIntrospection() {
Lazy l = lazy();
if (l.stackIntrospection == null) {
l.stackIntrospection = HotSpotJVMCIRuntime.runtime().getHostJVMCIBackend().getStackIntrospection();
}
return l.stackIntrospection;
}
/**
* This is called reflectively from the compiler side in HotSpotTruffleHostEnvironment.
*/
@Override
public TruffleCompiler getTruffleCompiler(TruffleCompilable compilable) {
Objects.requireNonNull(compilable, "Compilable must be non null.");
if (truffleCompiler == null) {
initializeTruffleCompiler(compilable);
rethrowTruffleCompilerInitializationException();
assert truffleCompiler != null : "TruffleCompiler must be non null";
}
return truffleCompiler;
}
/**
* We need to trigger initialization of the Truffle compiler when the first call target is
* created. Truffle call boundary methods are installed when the truffle compiler is
* initialized, as it requires the compiler to do so. Until then the call boundary methods are
* interpreted with the HotSpot interpreter (see
* {@link #setNotInlinableOrCompilable(ResolvedJavaMethod)} ). This is very slow and we want to
* avoid doing this as soon as possible. It can also be a real issue when compilation is turned
* off completely and no call targets would ever be compiled. Without ensureInitialized the
* stubs (see {@link HotSpotTruffleCompiler#installTruffleCallBoundaryMethod}) would never be
* installed in that case and we would use the HotSpot interpreter indefinitely.
*/
private void ensureInitialized(OptimizedCallTarget firstCallTarget) {
if (truffleCompilerInitialized) {
return;
}
CompilationTask localTask = initializationTask;
if (localTask == null) {
final Object lock = this;
synchronized (lock) {
localTask = initializationTask;
if (localTask == null && !truffleCompilerInitialized) {
rethrowTruffleCompilerInitializationException();
initializationTask = localTask = getCompileQueue().submitInitialization(firstCallTarget, new Consumer() {
@Override
public void accept(CompilationTask task) {
synchronized (lock) {
initializeTruffleCompiler(firstCallTarget);
assert truffleCompilerInitialized || truffleCompilerInitializationException != null;
assert initializationTask != null;
initializationTask = null;
}
}
});
}
}
}
if (localTask != null) {
firstCallTarget.maybeWaitForTask(localTask);
rethrowTruffleCompilerInitializationException();
} else {
assert truffleCompilerInitialized || truffleCompilerInitializationException != null;
}
}
/*
* Used reflectively in CompilerInitializationTest.
*/
public void resetCompiler() {
truffleCompiler = null;
truffleCompilerInitialized = false;
truffleCompilerInitializationException = null;
}
private synchronized void initializeTruffleCompiler(TruffleCompilable compilable) {
// might occur for multiple compiler threads at the same time.
if (!truffleCompilerInitialized) {
rethrowTruffleCompilerInitializationException();
try {
OptimizedCallTarget callTarget = (OptimizedCallTarget) compilable;
EngineData engine = callTarget.engine;
/*
* The init call target deliberately only saves the engine data and does not keep a
* strong reference to the root node to avoid memory leaks.
*/
OptimizedCallTarget initCallTarget = createInitializationCallTarget(engine);
profilingEnabled = engine.profilingEnabled;
HotSpotTruffleCompiler compiler = (HotSpotTruffleCompiler) newTruffleCompiler();
compiler.initialize(initCallTarget, true);
this.initializeCallTarget = initCallTarget;
pendingTransferToInterpreterOffset = compiler.pendingTransferToInterpreterOffset(callTarget);
if (pendingTransferToInterpreterOffset == -1) {
throw CompilerDirectives.shouldNotReachHere("Invalid offset for JavaThread::_pending_transfer_to_interpreter");
}
installCallBoundaryMethods(compiler);
installReservedOopMethods(compiler);
truffleCompiler = compiler;
traceTransferToInterpreter = engine.traceTransferToInterpreter;
truffleCompilerInitialized = true;
} catch (Throwable e) {
truffleCompilerInitializationException = e;
}
}
}
private void rethrowTruffleCompilerInitializationException() {
if (truffleCompilerInitializationException != null) {
throw sthrow(RuntimeException.class, truffleCompilerInitializationException);
}
}
@SuppressWarnings({"unchecked", "unused"})
private static T sthrow(Class type, Throwable t) throws T {
throw (T) t;
}
@Override
public OptimizedCallTarget createOptimizedCallTarget(OptimizedCallTarget source, RootNode rootNode) {
OptimizedCallTarget target = new HotSpotOptimizedCallTarget(source, rootNode);
ensureInitialized(target);
return target;
}
@Override
protected OptimizedCallTarget createInitializationCallTarget(EngineData engine) {
return new HotSpotOptimizedCallTarget(engine);
}
@Override
public void onCodeInstallation(TruffleCompilable compilable, InstalledCode installedCode) {
HotSpotOptimizedCallTarget callTarget = (HotSpotOptimizedCallTarget) compilable;
callTarget.setInstalledCode(installedCode);
}
/**
* Creates a log that {@code HotSpotSpeculationLog#managesFailedSpeculations() manages} a native
* failed speculations list. An important invariant is that an nmethod compiled with this log
* can never be executing once the log object dies. When the log object dies, it frees the
* failed speculations list thus invalidating the
* {@code HotSpotSpeculationLog#getFailedSpeculationsAddress() failed speculations address}
* embedded in the nmethod. If the nmethod were to execute after this point and fail a
* speculation, it would append the failed speculation to the already freed list.
*
* Truffle ensures this cannot happen as it only attaches managed speculation logs to
* {@link OptimizedCallTarget}s and {@link OptimizedOSRLoopNode}s. Executions of nmethods
* compiled for an {@link OptimizedCallTarget} or {@link OptimizedOSRLoopNode} object will have
* a strong reference to the object (i.e., as the receiver). This guarantees that such an
* nmethod cannot be executing after the object has died.
*/
@Override
public SpeculationLog createSpeculationLog() {
return new HotSpotSpeculationLog();
}
public static void setDontInlineCallBoundaryMethod(List callBoundaryMethods) {
for (ResolvedJavaMethod method : callBoundaryMethods) {
setNotInlinableOrCompilable(method);
}
}
static MetaAccessProvider getMetaAccess() {
return JVMCI.getRuntime().getHostJVMCIBackend().getMetaAccess();
}
/**
* Prevents C1 or C2 from inlining a call to and compiling a method annotated by
* {@link TruffleCallBoundary} (i.e., OptimizedCallTarget.callBoundary(Object[])
)
* so that we never miss the chance to jump from the Truffle interpreter to compiled code.
*
* This is quite slow as it forces every call to
* OptimizedCallTarget.callBoundary(Object[])
to run in the HotSpot interpreter, so
* later on we manually compile {@code callBoundary()} with Graal. This then lets a
* C1/C2-compiled caller jump to Graal-compiled {@code callBoundary()}, instead of having to go
* back to the HotSpot interpreter for every execution of {@code callBoundary()}.
*/
private static void setNotInlinableOrCompilable(ResolvedJavaMethod method) {
// JDK-8180487 and JDK-8186478 introduced breaking API changes so reflection is required.
Method[] methods = HotSpotResolvedJavaMethod.class.getMethods();
for (Method m : methods) {
if (m.getName().equals("setNotInlineable") || m.getName().equals("setNotInlinableOrCompilable") || m.getName().equals("setNotInlineableOrCompileable")) {
try {
m.invoke(method);
return;
} catch (IllegalAccessException | IllegalArgumentException | InvocationTargetException e) {
throw new InternalError(e);
}
}
}
throw new InternalError(String.format(
"Could not find setNotInlineable, setNotInlinableOrCompilable or setNotInlineableOrCompileable in %s",
HotSpotResolvedJavaMethod.class));
}
@Override
public BackgroundCompileQueue getCompileQueue() {
return lazy();
}
@SuppressWarnings("unused")
private boolean verifyCompilerConfiguration(String name) {
String lazyName = getCompilerConfigurationName();
if (!name.equals(lazyName)) {
throw new AssertionError("Expected compiler configuration name " + name + " but was " + lazyName + ".");
}
return true;
}
@SuppressWarnings("try")
@Override
@TruffleBoundary
public void bypassedInstalledCode(OptimizedCallTarget target) {
if (!truffleCompilerInitialized) {
// do not wait for initialization
return;
}
installCallBoundaryMethods((HotSpotTruffleCompiler) truffleCompiler);
}
public boolean bypassedReservedOop() {
CompilationTask task = initializationTask;
if (task != null) {
/*
* We were currently initializing. No need to reinstall the code stubs. The caller can
* use oop accessor methods (setJVMCIReservedReference0, getJVMCIReservedReference0)
* instead.
*/
return true;
}
if (!truffleCompilerInitialized) {
/*
* If the initialization did not yet complete here, then this means that initializing
* the compiler failed. We can therefore not continue installing the stubs. So we
* re-throw the compiler initialization error or we return false which will likely
* trigger an assertion error in the caller at a later point.
*/
if (truffleCompilerInitializationException != null) {
throw new AssertionError("Compiler initialization failed cannot continue.", truffleCompilerInitializationException);
}
return false;
}
/*
* If we reached this point we are not initializing anymore and the compiler is successfully
* initialized. If bypassedReservedOop was called this also means that we skipped the
* installed code for the JVMCI reserved oop accessor. This can happen if the debugger steps
* over the code and invalidates any installed Java code stub, the HotSpot code cache
* decides to clean up the the stub for the accessor method or this happened due to an
* initialization race condition. In all three cases the best we can do is to try to install
* the stub code again even if this means repeated compilation and installation of this
* method during debug-stepping. Unfortunately there is no known way to detect invalidation
* of HotSpot installed code reliably.
*/
installReservedOopMethods((HotSpotTruffleCompiler) truffleCompiler);
/*
* We have reinstalled the stubs. Returning true indicates that the caller should retry
* calling the stubs or use other available means like the oop accessor methods
* (setJVMCIReservedReference0, getJVMCIReservedReference0).
*/
return true;
}
private void installCallBoundaryMethods(HotSpotTruffleCompiler compiler) {
ResolvedJavaType type = getMetaAccess().lookupJavaType(OptimizedCallTarget.class);
for (ResolvedJavaMethod method : type.getDeclaredMethods(false)) {
if (method.getAnnotation(TruffleCallBoundary.class) != null) {
if (compiler != null) {
OptimizedCallTarget initCallTarget = initializeCallTarget;
Objects.requireNonNull(initCallTarget);
compiler.installTruffleCallBoundaryMethod(method, initCallTarget);
} else {
setNotInlinableOrCompilable(method);
}
}
}
}
private void installReservedOopMethods(HotSpotTruffleCompiler compiler) {
ResolvedJavaType local = getMetaAccess().lookupJavaType(HotSpotFastThreadLocal.class);
for (ResolvedJavaMethod method : local.getDeclaredMethods(false)) {
String name = method.getName();
switch (name) {
case "set":
case "get":
if (compiler != null) {
OptimizedCallTarget initCallTarget = initializeCallTarget;
Objects.requireNonNull(initCallTarget);
compiler.installTruffleReservedOopMethod(method, initCallTarget);
} else {
setNotInlinableOrCompilable(method);
}
break;
}
}
}
@Override
public KnownMethods getKnownMethods() {
if (knownMethods == null) {
knownMethods = new KnownMethods(getMetaAccess());
}
return knownMethods;
}
@Override
public void notifyTransferToInterpreter() {
if (CompilerDirectives.inInterpreter() && traceTransferToInterpreter) {
traceTransferToInterpreter();
}
}
private void traceTransferToInterpreter() {
TruffleCompiler compiler = truffleCompiler;
assert compiler != null;
assert pendingTransferToInterpreterOffset != -1;
long threadStruct = UNSAFE.getLong(JAVA_LANG_ACCESS.currentCarrierThread(), THREAD_EETOP_OFFSET);
long pendingTransferToInterpreterAddress = threadStruct + pendingTransferToInterpreterOffset;
boolean deoptimized = UNSAFE.getByte(pendingTransferToInterpreterAddress) != 0;
if (deoptimized) {
logTransferToInterpreter(pendingTransferToInterpreterAddress);
}
}
private void logTransferToInterpreter(long pendingTransferToInterpreterAddress) {
OptimizedCallTarget callTarget = (OptimizedCallTarget) iterateFrames(FrameInstance::getCallTarget);
if (callTarget == null) {
return;
}
StackTraceHelper.logHostAndGuestStacktrace("transferToInterpreter", callTarget);
UNSAFE.putByte(pendingTransferToInterpreterAddress, (byte) 0);
}
@Override
public boolean isProfilingEnabled() {
if (profilingEnabled == null) {
return true;
}
return profilingEnabled;
}
@Override
protected JavaConstant forObject(final Object object) {
final HotSpotConstantReflectionProvider constantReflection = (HotSpotConstantReflectionProvider) HotSpotJVMCIRuntime.runtime().getHostJVMCIBackend().getConstantReflection();
return constantReflection.forObject(object);
}
@Override
protected int getBaseInstanceSize(Class> type) {
if (type.isArray() || type.isPrimitive()) {
throw new IllegalArgumentException("Class " + type.getName() + " is a primitive type or an array class!");
}
HotSpotMetaAccessProvider meta = (HotSpotMetaAccessProvider) getMetaAccess();
HotSpotResolvedObjectType resolvedType = (HotSpotResolvedObjectType) meta.lookupJavaType(type);
return Math.abs(resolvedType.instanceSize());
}
private static boolean fieldIsNotEligible(Class> clazz, ResolvedJavaField f) {
/*
* Fields of Reference class are excluded because they are handled in a special way by the
* VM. In any case, we have to check that the field declared in the Reference class, because
* Reference class has private fields and so subclasses can have fields of the same names.
*/
return (Reference.class.isAssignableFrom(clazz) && f.getDeclaringClass().isAssignableFrom(getMetaAccess().lookupJavaType(Reference.class)));
}
@Override
protected int[] getFieldOffsets(Class> type, boolean includePrimitive, boolean includeSuperclasses) {
if (type.isArray() || type.isPrimitive()) {
throw new IllegalArgumentException("Class " + type.getName() + " is a primitive type or an array class!");
}
HotSpotMetaAccessProvider meta = (HotSpotMetaAccessProvider) getMetaAccess();
ResolvedJavaType javaType = meta.lookupJavaType(type);
ResolvedJavaField[] fields = javaType.getInstanceFields(includeSuperclasses);
int[] fieldOffsets = new int[fields.length];
int fieldsCount = 0;
for (int i = 0; i < fields.length; i++) {
final ResolvedJavaField f = fields[i];
if ((includePrimitive || !f.getJavaKind().isPrimitive()) && !fieldIsNotEligible(type, f)) {
fieldOffsets[fieldsCount++] = f.getOffset();
}
}
return Arrays.copyOf(fieldOffsets, fieldsCount);
}
private T getVMOptionValue(String name, Class type) {
try {
return vmConfigAccess.getFlag(name, type);
} catch (JVMCIError jvmciError) {
// The option was not found. Throw rather IllegalArgumentException than JVMCIError
throw new IllegalArgumentException(jvmciError);
}
}
@Override
protected int getObjectAlignment() {
return getVMOptionValue("ObjectAlignmentInBytes", Integer.class);
}
@Override
protected int getArrayIndexScale(Class> componentType) {
MetaAccessProvider meta = getMetaAccess();
ResolvedJavaType resolvedType = meta.lookupJavaType(componentType);
return ((HotSpotJVMCIRuntime) JVMCI.getRuntime()).getArrayIndexScale(resolvedType.getJavaKind());
}
@Override
protected int getArrayBaseOffset(Class> componentType) {
MetaAccessProvider meta = getMetaAccess();
ResolvedJavaType resolvedType = meta.lookupJavaType(componentType);
return ((HotSpotJVMCIRuntime) JVMCI.getRuntime()).getArrayBaseOffset(resolvedType.getJavaKind());
}
@Override
public long getStackOverflowLimit() {
int stackOverflowLimitOffset = vmConfigAccess.getFieldOffset(JAVA_SPEC >= 16 ? "JavaThread::_stack_overflow_state._stack_overflow_limit" : "JavaThread::_stack_overflow_limit",
Integer.class, "address");
long eetop = UNSAFE.getLong(JAVA_LANG_ACCESS.currentCarrierThread(), THREAD_EETOP_OFFSET);
return UNSAFE.getLong(eetop + stackOverflowLimitOffset);
}
@SuppressWarnings("deprecation" /* JDK-8277863 */)
static long getObjectFieldOffset(Field field) {
return UNSAFE.objectFieldOffset(field);
}
@Override
protected T asObject(final Class type, final JavaConstant constant) {
if (constant.isNull()) {
return null;
}
final HotSpotObjectConstant hsConstant = (HotSpotObjectConstant) constant;
return hsConstant.asObject(type);
}
@Override
protected AbstractFastThreadLocal getFastThreadLocalImpl() {
return HotSpotFastThreadLocal.SINGLETON;
}
public static HotSpotTruffleRuntime getRuntime() {
return (HotSpotTruffleRuntime) OptimizedTruffleRuntime.getRuntime();
}
public boolean isLibGraalCompilationEnabled() {
return compilationSupport instanceof LibGraalTruffleCompilationSupport;
}
}