
org.graphstream.ui.swing.util.CubicCurve Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of gs-ui-swing Show documentation
Show all versions of gs-ui-swing Show documentation
Swing interface for GraphStream
The newest version!
/*
* This file is part of GraphStream .
*
* GraphStream is a library whose purpose is to handle static or dynamic
* graph, create them from scratch, file or any source and display them.
*
* This program is free software distributed under the terms of two licenses, the
* CeCILL-C license that fits European law, and the GNU Lesser General Public
* License. You can use, modify and/ or redistribute the software under the terms
* of the CeCILL-C license as circulated by CEA, CNRS and INRIA at the following
* URL or under the terms of the GNU LGPL as published by
* the Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see .
*
* The fact that you are presently reading this means that you have had
* knowledge of the CeCILL-C and LGPL licenses and that you accept their terms.
*/
/**
* @author Antoine Dutot
* @author Guilhelm Savin
* @author Hicham Brahimi
*/
package org.graphstream.ui.swing.util;
import java.awt.BorderLayout;
import java.awt.Color;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.geom.CubicCurve2D;
import java.awt.geom.Line2D;
import java.awt.geom.Point2D;
import javax.swing.JFrame;
import javax.swing.JPanel;
import org.graphstream.ui.geom.Point2;
import org.graphstream.ui.geom.Point3;
import org.graphstream.ui.geom.Vector2;
import org.graphstream.ui.graphicGraph.GraphicEdge;
import org.graphstream.ui.graphicGraph.GraphicNode;
import org.graphstream.ui.view.camera.DefaultCamera2D;
import org.graphstream.ui.swing.renderer.AreaSkeleton;
import org.graphstream.ui.swing.renderer.Skeleton;
import org.graphstream.ui.swing.renderer.shape.Connector;
import org.graphstream.ui.swing.util.AttributeUtils.Tuple;
/** Utility methods to deal with cubic Bézier curves. */
public class CubicCurve {
/**
* Evaluate a cubic Bézier curve according to control points `x0`, `x1`,
* `x2` and `x3` and return the position at parametric position `t` of the
* curve.
*
* @return The coordinate at parametric position `t` on the curve.
*/
public static double eval(double x0, double x1, double x2, double x3, double t) {
double tt = (1f - t);
return x0 * (tt * tt * tt) + 3f * x1 * t * (tt * tt) + 3f * x2
* (t * t) * tt + x3 * (t * t * t);
}
/**
* Evaluate a cubic Bézier curve according to control points `p0`, `p1`,
* `p2` and `p3` and return the position at parametric position `t` of the
* curve.
*
* @return The point at parametric position `t` on the curve.
*/
public static Point2 eval(Point2 p0, Point2 p1, Point2 p2, Point2 p3,
double t) {
return new Point2(eval(p0.x, p1.x, p2.x, p3.x, t), eval(p0.y, p1.y,
p2.y, p3.y, t));
}
/** Evaluate a cubic Bézier curve according to control points `p0`, `p1`, `p2` and `p3` and
* return the position at parametric position `t` of the curve.
* @return The point at parametric position `t` on the curve. */
public static Point3 eval(Point3 p0, Point3 p1, Point3 p2, Point3 p3,
double t) {
return new Point3(eval(p0.x, p1.x, p2.x, p3.x, t),
eval(p0.y, p1.y, p2.y, p3.y, t),
eval(p0.z, p1.z, p2.z, p3.z, t));
}
/**
* Evaluate a cubic Bézier curve according to control points `p0`, `p1`,
* `p2` and `p3` and return the position at parametric position `t` of the
* curve.
*
* @return The point at parametric position `t` on the curve.
*/
public static Point2D.Double eval(Point2D.Double p0, Point2D.Double p1,
Point2D.Double p2, Point2D.Double p3, double t) {
return new Point2D.Double(eval(p0.x, p1.x, p2.x, p3.x, t), eval(p0.y,
p1.y, p2.y, p3.y, t));
}
/**
* Evaluate a cubic Bézier curve according to control points `p0`, `p1`,
* `p2` and `p3` and store the position at parametric position `t` of the
* curve in `result`.
*
* @return the given reference to `result`.
*/
public static Point2 eval(Point2 p0, Point2 p1, Point2 p2, Point2 p3,
double t, Point2 result) {
result.set(eval(p0.x, p1.x, p2.x, p3.x, t),
eval(p0.y, p1.y, p2.y, p3.y, t));
return result;
}
/**
* Derivative of a cubic Bézier curve according to control points `x0`,
* `x1`, `x2` and `x3` at parametric position `t` of the curve.
*
* @return The derivative at parametric position `t` on the curve.
*/
public static double derivative(double x0, double x1, double x2, double x3,
double t) {
return 3 * (x3 - 3 * x2 + 3 * x1 - x0) * t * t + 2
* (3 * x2 - 6 * x1 + 3 * x0) * t + (3 * x1 - 3 * x0);
}
/**
* Derivative point of a cubic Bézier curve according to control points
* `x0`, `x1`, `x2` and `x3` at parametric position `t` of the curve.
*
* @return The derivative point at parametric position `t` on the curve.
*/
public static Point2 derivative(Point2 p0, Point2 p1, Point2 p2, Point3 p3,
double t) {
return new Point2(derivative(p0.x, p1.x, p2.x, p3.x, t), derivative(
p0.y, p1.y, p2.y, p3.y, t));
}
/**
* Store in `result` the derivative point of a cubic Bézier curve according
* to control points `x0`, `x1`, `x2` and `x3` at parametric position `t` of
* the curve.
*
* @return the given reference to `result`.
*/
public static Point2 derivative(Point2 p0, Point2 p1, Point2 p2, Point3 p3,
double t, Point2 result) {
result.set(derivative(p0.x, p1.x, p2.x, p3.x, t),
derivative(p0.y, p1.y, p2.y, p3.y, t));
return result;
}
/**
* The perpendicular vector to the curve defined by control points `p0`,
* `p1`, `p2` and `p3` at parametric position `t`.
*
* @return A vector perpendicular to the curve at position `t`.
*/
public static Vector2 perpendicular(Point2 p0, Point2 p1, Point2 p2,
Point2 p3, double t) {
return new Vector2(derivative(p0.y, p1.y, p2.y, p3.y, t), -derivative(
p0.x, p1.x, p2.x, p3.x, t));
}
/**
* Store in `result` the perpendicular vector to the curve defined by
* control points `p0`, `p1`, `p2` and `p3` at parametric position `t`.
*
* @return the given reference to `result`.
*/
public static Vector2 perpendicular(Point2 p0, Point2 p1, Point2 p2,
Point2 p3, double t, Vector2 result) {
result.set(derivative(p0.y, p1.y, p2.y, p3.y, t),
-derivative(p0.x, p1.x, p2.x, p3.x, t));
return result;
}
/**
* The perpendicular vector to the curve defined by control points `p0`,
* `p1`, `p2` and `p3` at parametric position `t`.
*
* @return A vector perpendicular to the curve at position `t`.
*/
public static Point2D.Double perpendicular(Point2D.Double p0,
Point2D.Double p1, Point2D.Double p2, Point2D.Double p3, double t) {
return new Point2D.Double(derivative(p0.y, p1.y, p2.y, p3.y, t),
-derivative(p0.x, p1.x, p2.x, p3.x, t));
}
/** A quick and dirty hack to evaluate the length of a cubic bezier curve. This method simply compute
* the length of the three segments of the enclosing polygon and scale them. This is fast but
* inaccurate. */
public static double approxLengthOfCurveQuickAndDirty( Connector c ) {
// Computing a curve real length is really heavy.
// We approximate it using the length of the 3 line segments of the enclosing
// control points.
return ( c.fromPos().distance( c.byPos1() )*0.5f + c.byPos1().distance( c.byPos2() )*0.8f + c.byPos2().distance( c.toPos() )*0.5f );
}
/** Evaluate the length of a Bézier curve by taking four points on the curve and summing the lengths of
* the five segments thus defined. */
public static double approxLengthOfCurveQuick( Connector c ) {
Point2 ip0 = CubicCurve.eval( c.fromPos(), c.byPos1(), c.byPos2(), c.toPos(), 0.1f );
Point2 ip1 = CubicCurve.eval( c.fromPos(), c.byPos1(), c.byPos2(), c.toPos(), 0.3f );
Point2 ip2 = CubicCurve.eval( c.fromPos(), c.byPos1(), c.byPos2(), c.toPos(), 0.7f );
Point2 ip3 = CubicCurve.eval( c.fromPos(), c.byPos1(), c.byPos2(), c.toPos(), 0.9f );
return ( c.fromPos().distance( ip0 ) + ip0.distance( ip1 ) + ip1.distance( ip2 ) + ip2.distance( ip3 ) + ip3.distance( c.toPos() ) );
}
/** Evaluate the length of a Bézier curve by taking n points on the curve and summing the lengths of
* the n+1 segments thus defined. */
public static double approxLengthOfCurve( Connector c ) {
double inc = 0.1;
double i = inc;
double len = 0.0;
Point2 p0 = c.fromPos();
while( i < 1f ) {
Point2 p = CubicCurve.eval( c.fromPos(), c.byPos1(), c.byPos2(), c.toPos(), i );
i += inc;
len += p0.distance( p );
p0 = p;
}
len += p0.distance( c.toPos() );
return len;
}
/** Return two points, one inside and the second outside of the shape of the destination node
* of the given `edge`, the points can be used to deduce a vector along the Bézier curve entering
* point in the shape. */
public static Tuple approxVectorEnteringCurve( GraphicEdge edge, Connector c, DefaultCamera2D camera ) {
GraphicNode node = edge.to;
AreaSkeleton info = (AreaSkeleton)node.getAttribute(Skeleton.attributeName);
double w = 0.0;
double h = 0.0;
if( info != null ) {
w = info.theSize.x;
h = info.theSize.y;
}
else {
w = camera.getMetrics().lengthToGu( node.getStyle().getSize(), 0 );
h = w ;
if( node.getStyle().getSize().size() > 1 )
camera.getMetrics().lengthToGu( node.getStyle().getSize(), 1 ) ;
}
boolean searching = true;
Point3 p0 = c.fromPos();
Point3 p1 = c.toPos();
double inc = 0.1f;
double i = inc;
while( searching ) {
p1 = CubicCurve.eval( c.fromPos(), c.byPos1(), c.byPos2(), c.toPos(), i );
if( ShapeUtil.isPointIn( node, p1, w, h ) ) {
searching = false;
} else {
p0 = p1;
}
}
return new Tuple(p0, p1);
}
/** Use a dichotomy method to evaluate the intersection between the `edge` destination node
* shape and the Bézier curve of the connector `c`. The returned values are the point of
* intersection as well as the parametric position of this point on the curve (a float).
* The maximal recursive depth of the dichotomy is fixed to 7 here.
* @return A 2-tuple made of the point of intersection and the associated parametric position.
*/
public static Tuple approxIntersectionPointOnCurve( GraphicEdge edge, Connector c, DefaultCamera2D camera ) {
return approxIntersectionPointOnCurve( edge, c, camera, 7 );
}
/** Use a dichotomy method to evaluate the intersection between the `edge` destination node
* shape and the Bézier curve of the connector `c`. The returned values are the point of
* intersection as well as the parametric position of this point on the curve (a float).
* The dichotomy can recurse at any level to increase precision, often 7 is sufficient, the
* `maxDepth` parameter allows to set this depth.
* @return A 2-tuple made of the point of intersection and the associated parametric position.
*/
public static Tuple approxIntersectionPointOnCurve( GraphicEdge edge, Connector c, DefaultCamera2D camera, int maxDepth ) {
GraphicNode node = edge.to;
AreaSkeleton info = (AreaSkeleton)node.getAttribute(Skeleton.attributeName);
double w = 0.0;
double h = 0.0;
if( info != null ) {
w = info.theSize.x;
h = info.theSize.y;
}
else {
w = camera.getMetrics().lengthToGu( node.getStyle().getSize(), 0 );
h = w ;
if( node.getStyle().getSize().size() > 1 )
camera.getMetrics().lengthToGu( node.getStyle().getSize(), 1 );
}
boolean searching = true;
Point3 p = c.toPos(); // = CubicCurve.eval( c.fromPos, c.byPos1, c.byPos2, c.toPos, 0.5f )
double tbeg = 0.0;
double tend = 1.0;
double t = 0.0;
double depth = 0;
while( depth < maxDepth ) {
t = tbeg + ( (tend - tbeg ) / 2 );
p = CubicCurve.eval( c.fromPos(), c.byPos1(), c.byPos2(), c.toPos(), t );
if( ShapeUtil.isPointIn( node, p, w, h ) ) {
tend = t;
}
else {
tbeg = t;
}
depth += 1;
}
return new Tuple(p, t);
}
// =================================================================================================
// A simple test for the cubic curve eval, derivative and perpendicular methods.
// =================================================================================================
public static void main( String[] args ) {
JFrame frame = new JFrame("Test Beziers");
MyCanvas canvas = new MyCanvas();
frame.setDefaultCloseOperation( JFrame.EXIT_ON_CLOSE );
frame.add( canvas, BorderLayout.CENTER );
frame.setSize( 400, 420 );
frame.setVisible( true );
}
}
@SuppressWarnings("serial")
class MyCanvas extends JPanel {
@Override
protected void paintComponent(Graphics gg) {
Graphics2D g = (Graphics2D)gg;
Point2D.Double P0 = new Point2D.Double( 10, 390 );
Point2D.Double P1 = new Point2D.Double( 50, 10 );
Point2D.Double P2 = new Point2D.Double( 350, 390 );
Point2D.Double P3 = new Point2D.Double( 390, 10 );
CubicCurve2D.Double curve = new CubicCurve2D.Double();
Line2D.Double line = new Line2D.Double();
curve.setCurve( P0, P1, P2, P3 );
g.setColor( Color.BLUE );
g.draw( curve );
g.setColor( Color.RED );
line.setLine( P0, P1 );
g.draw( line );
line.setLine( P1, P2 );
g.draw( line );
line.setLine( P2, P3 );
g.draw( line );
double t = 0.0;
g.setColor( Color.GREEN );
while( t < 1 ) {
Point2D.Double P = CubicCurve.eval( P0, P1, P2, P3, t );
Point2D.Double V = CubicCurve.perpendicular( P0, P1, P2, P3, t );
Point2D.Double T = new Point2D.Double( P.x+V.x, P.y+V.y );
line.setLine( P, T );
g.draw( line );
t += 0.01;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy