All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.grouplens.lenskit.eval.metrics.predict.MAEPredictMetric Maven / Gradle / Ivy

There is a newer version: 3.0-T5
Show newest version
/*
 * LensKit, an open source recommender systems toolkit.
 * Copyright 2010-2014 LensKit Contributors.  See CONTRIBUTORS.md.
 * Work on LensKit has been funded by the National Science Foundation under
 * grants IIS 05-34939, 08-08692, 08-12148, and 10-17697.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as
 * published by the Free Software Foundation; either version 2.1 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 51
 * Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */
package org.grouplens.lenskit.eval.metrics.predict;

import org.grouplens.lenskit.Recommender;
import org.grouplens.lenskit.eval.Attributed;
import org.grouplens.lenskit.eval.data.traintest.TTDataSet;
import org.grouplens.lenskit.eval.metrics.AbstractMetric;
import org.grouplens.lenskit.eval.metrics.ResultColumn;
import org.grouplens.lenskit.eval.traintest.TestUser;
import org.grouplens.lenskit.vectors.SparseVector;
import org.grouplens.lenskit.vectors.VectorEntry;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import static java.lang.Math.abs;

/**
 * Evaluate a recommender's predictions by Mean Absolute Error. In general, prefer
 * RMSE ({@link RMSEPredictMetric}) to MAE.
 *
 * 

This evaluator computes two variants of MAE. The first is by-rating, * where the absolute error is averaged over all predictions. The second is * by-user, where the MAE is computed per-user and then averaged * over all users. * * @author GroupLens Research */ public class MAEPredictMetric extends AbstractMetric { private static final Logger logger = LoggerFactory.getLogger(MAEPredictMetric.class); public MAEPredictMetric() { super(AggregateResult.class, UserResult.class); } @Override public Context createContext(Attributed algo, TTDataSet ds, Recommender rec) { return new Context(); } @Override public UserResult doMeasureUser(TestUser user, Context context) { SparseVector ratings = user.getTestRatings(); SparseVector predictions = user.getPredictions(); if (predictions == null) { return null; } double err = 0; int n = 0; for (VectorEntry e : predictions) { if (Double.isNaN(e.getValue())) { continue; } err += abs(e.getValue() - ratings.get(e.getKey())); n++; } if (n > 0) { double mae = err / n; context.addUser(n, err, mae); return new UserResult(mae); } else { return null; } } @Override protected AggregateResult getTypedResults(Context context) { return context.finish(); } public static class UserResult { @ResultColumn("MAE") public final double mae; public UserResult(double err) { mae = err; } } public static class AggregateResult { @ResultColumn("MAE.ByUser") public final double userMAE; @ResultColumn("MAE.ByRating") public final double globalMAE; public AggregateResult(double umae, double gmae) { userMAE = umae; globalMAE = gmae; } } public class Context { private double totalError = 0; private double totalUserError = 0; private int nratings = 0; private int nusers = 0; public void addUser(int nr, double sae, double mae) { totalError += sae; totalUserError += mae; nratings += nr; nusers += 1; } public AggregateResult finish() { if (nratings > 0) { double v = totalError / nratings; double uv = totalUserError / nusers; logger.info("MAE: {}", v); return new AggregateResult(uv, v); } else { return null; } } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy