All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.grouplens.lenskit.eval.metrics.predict.NDCGPredictMetric Maven / Gradle / Ivy

There is a newer version: 3.0-T5
Show newest version
/*
 * LensKit, an open source recommender systems toolkit.
 * Copyright 2010-2014 LensKit Contributors.  See CONTRIBUTORS.md.
 * Work on LensKit has been funded by the National Science Foundation under
 * grants IIS 05-34939, 08-08692, 08-12148, and 10-17697.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as
 * published by the Free Software Foundation; either version 2.1 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 51
 * Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */
package org.grouplens.lenskit.eval.metrics.predict;

import it.unimi.dsi.fastutil.longs.LongIterator;
import it.unimi.dsi.fastutil.longs.LongList;
import org.grouplens.lenskit.Recommender;
import org.grouplens.lenskit.eval.Attributed;
import org.grouplens.lenskit.eval.data.traintest.TTDataSet;
import org.grouplens.lenskit.eval.metrics.AbstractMetric;
import org.grouplens.lenskit.eval.metrics.ResultColumn;
import org.grouplens.lenskit.eval.traintest.TestUser;
import org.grouplens.lenskit.util.statistics.MeanAccumulator;
import org.grouplens.lenskit.vectors.SparseVector;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import static java.lang.Math.log;

/**
 * Evaluate a recommender's predictions with normalized discounted cumulative gain.
 *
 * 

This is a prediction evaluator that uses base-2 nDCG to evaluate recommender * accuracy. The items are ordered by predicted preference and the nDCG is * computed using the user's real rating as the gain for each item. Doing this * only over the queried items, rather than in the general recommend condition, * avoids penalizing recommenders for recommending items that would be better * if the user had known about them and provided ratings (e.g., for doing their * job). * *

nDCG is computed per-user and then averaged over all users. * * @author GroupLens Research */ public class NDCGPredictMetric extends AbstractMetric { private static final Logger logger = LoggerFactory.getLogger(NDCGPredictMetric.class); public NDCGPredictMetric() { super(Result.class, Result.class); } @Override public MeanAccumulator createContext(Attributed algo, TTDataSet ds, Recommender rec) { return new MeanAccumulator(); } /** * Compute the DCG of a list of items with respect to a value vector. */ static double computeDCG(LongList items, SparseVector values) { final double lg2 = log(2); double gain = 0; int rank = 0; LongIterator iit = items.iterator(); while (iit.hasNext()) { final long item = iit.nextLong(); final double v = values.get(item); rank++; if (rank < 2) { gain += v; } else { gain += v * lg2 / log(rank); } } return gain; } @Override public Result doMeasureUser(TestUser user, MeanAccumulator context) { SparseVector predictions = user.getPredictions(); if (predictions == null) { return null; } SparseVector ratings = user.getTestRatings(); LongList ideal = ratings.keysByValue(true); LongList actual = predictions.keysByValue(true); double idealGain = computeDCG(ideal, ratings); double gain = computeDCG(actual, ratings); double score = gain / idealGain; context.add(score); return new Result(score); } @Override protected Result getTypedResults(MeanAccumulator context) { return new Result(context.getMean()); } public static class Result { @ResultColumn("nDCG") public final double utility; public Result(double util) { utility = util; } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy