org.grouplens.lenskit.eval.metrics.topn.TopNEntropyMetric Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of lenskit-eval Show documentation
Show all versions of lenskit-eval Show documentation
Facilities for evaluating recommender algorithms.
/*
* LensKit, an open source recommender systems toolkit.
* Copyright 2010-2014 LensKit Contributors. See CONTRIBUTORS.md.
* Work on LensKit has been funded by the National Science Foundation under
* grants IIS 05-34939, 08-08692, 08-12148, and 10-17697.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
package org.grouplens.lenskit.eval.metrics.topn;
import it.unimi.dsi.fastutil.longs.Long2IntMap;
import it.unimi.dsi.fastutil.longs.Long2IntOpenHashMap;
import org.grouplens.lenskit.Recommender;
import org.grouplens.lenskit.eval.Attributed;
import org.grouplens.lenskit.eval.data.traintest.TTDataSet;
import org.grouplens.lenskit.eval.metrics.AbstractMetric;
import org.grouplens.lenskit.eval.metrics.ResultColumn;
import org.grouplens.lenskit.eval.traintest.TestUser;
import org.grouplens.lenskit.scored.ScoredId;
import java.util.Collections;
import java.util.List;
/**
* Metric that measures the entropy of the top N recommendations across all users.
*
* This tell us essentially how large of a range of the items your recommender is covering.
*
* Small values indicate that the algorithm tends to prefer a small number of items which it recomments
* to all users. Large values mean that the algorithm recommends many different items (to many different
* users)
*
* The smallest value happens when the topN list is the same for all users (which would give an entropy
* of roughly log_2(N)). The largest value happens when each item is recommended the same number of times
* (for an entropy of roughly log_2(number of items)).
*
* @author GroupLens Research
*/
public class TopNEntropyMetric extends AbstractMetric {
private final String prefix;
private final String suffix;
private final int listSize;
private final ItemSelector candidates;
private final ItemSelector exclude;
public TopNEntropyMetric(String pre, String sfx, int listSize, ItemSelector candidates, ItemSelector exclude) {
super(Result.class, Void.TYPE);
prefix = pre;
suffix = sfx;
this.listSize = listSize;
this.candidates = candidates;
this.exclude = exclude;
}
@Override
protected String getPrefix() {
return prefix;
}
@Override
protected String getSuffix() {
return suffix;
}
@Override
public Context createContext(Attributed algo, TTDataSet ds, Recommender rec) {
return new Context();
}
@Override
public List getUserColumnLabels() {
return Collections.emptyList();
}
@Override
public Void doMeasureUser(TestUser user, Context context) {
List recs;
recs = user.getRecommendations(listSize, candidates, exclude);
if (recs != null) {
context.addUser(recs);
}
return null;
}
@Override
protected Result getTypedResults(Context context) {
return context.finish();
}
public static class Result {
@ResultColumn("TopN.Entropy")
public final double entropy;
public Result(double e) {
entropy = e;
}
}
public class Context {
private Long2IntMap counts = new Long2IntOpenHashMap();
private int recCount = 0;
private void addUser(List recs) {
for (ScoredId s: recs) {
counts.put(s.getId(), counts.get(s.getId()) +1);
recCount +=1;
}
}
public Result finish() {
if (recCount > 0) {
double entropy = 0;
for (Long2IntMap.Entry e : counts.long2IntEntrySet()) {
double p = (double) e.getIntValue()/ recCount;
entropy -= p*Math.log(p)/Math.log(2);
}
return new Result(entropy);
} else {
return null;
}
}
}
/**
* @author GroupLens Research
*/
public static class Builder extends TopNMetricBuilder {
@Override
public TopNEntropyMetric build() {
return new TopNEntropyMetric(prefix, suffix, listSize, candidates, exclude);
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy