org.grouplens.lenskit.eval.traintest.OutputTopNMetric Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of lenskit-eval Show documentation
Show all versions of lenskit-eval Show documentation
Facilities for evaluating recommender algorithms.
/*
* LensKit, an open source recommender systems toolkit.
* Copyright 2010-2014 LensKit Contributors. See CONTRIBUTORS.md.
* Work on LensKit has been funded by the National Science Foundation under
* grants IIS 05-34939, 08-08692, 08-12148, and 10-17697.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
package org.grouplens.lenskit.eval.traintest;
import com.google.common.base.Throwables;
import org.grouplens.lenskit.Recommender;
import org.grouplens.lenskit.eval.Attributed;
import org.grouplens.lenskit.eval.data.traintest.TTDataSet;
import org.grouplens.lenskit.eval.metrics.AbstractMetric;
import org.grouplens.lenskit.eval.metrics.topn.ItemSelector;
import org.grouplens.lenskit.eval.metrics.topn.ItemSelectors;
import org.grouplens.lenskit.scored.ScoredId;
import org.grouplens.lenskit.util.table.TableLayout;
import org.grouplens.lenskit.util.table.TableLayoutBuilder;
import org.grouplens.lenskit.util.table.writer.CSVWriter;
import org.grouplens.lenskit.util.table.writer.TableWriter;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.io.File;
import java.io.IOException;
import java.util.Collections;
import java.util.List;
/**
* Top-N metric that writes recommendations to a file.
*
* @author GroupLens Research
*/
public class OutputTopNMetric extends AbstractMetric {
private static final Logger logger = LoggerFactory.getLogger(OutputTopNMetric.class);
private final ExperimentOutputLayout outputLayout;
private final TableWriter tableWriter;
private final int listSize;
private final ItemSelector candidates;
private final ItemSelector exclude;
public OutputTopNMetric(ExperimentOutputLayout layout, File file,
int listSize, ItemSelector candidates, ItemSelector exclude) throws IOException {
super(Void.TYPE, Void.TYPE);
outputLayout = layout;
TableLayout recLayout = TableLayoutBuilder.copy(layout.getCommonLayout())
.addColumn("User")
.addColumn("Item")
.addColumn("Rank")
.addColumn("Score")
.build();
tableWriter = CSVWriter.open(file, recLayout);
this.listSize = listSize;
this.candidates = candidates;
this.exclude = exclude;
}
@Override
public Context createContext(Attributed algo, TTDataSet ds, Recommender rec) {
return new Context(outputLayout.prefixTable(tableWriter, algo, ds));
}
@Override
public Void doMeasureUser(TestUser user, Context context) {
List recs;
recs = user.getRecommendations(listSize, candidates, exclude);
logger.debug("outputting {} recommendations for user {}", recs.size(), user.getUserId());
int counter = 1;
for (ScoredId rec: recs) {
try {
context.writer.writeRow(user.getUserId(), rec.getId(),
counter, rec.getScore());
} catch (IOException e) {
throw Throwables.propagate(e);
}
}
return null;
}
@Override
protected Void getTypedResults(Context context) {
return null;
}
@Override
public void close() throws IOException {
tableWriter.close();
}
public static class Context {
private final TableWriter writer;
Context(TableWriter tw) {
writer = tw;
}
}
public static class Factory extends MetricFactory {
@Override
public OutputTopNMetric createMetric(TrainTestEvalTask task) throws IOException {
return new OutputTopNMetric(task.getOutputLayout(), task.getRecommendOutput(), -1,
ItemSelectors.allItems(),
ItemSelectors.trainingItems());
}
@Override
public List getColumnLabels() {
return Collections.emptyList();
}
@Override
public List getUserColumnLabels() {
return Collections.emptyList();
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy