org.grouplens.lenskit.eval.metrics.topn.TopNPopularityMetric Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of lenskit-eval Show documentation
Show all versions of lenskit-eval Show documentation
Facilities for evaluating recommender algorithms.
/*
* LensKit, an open source recommender systems toolkit.
* Copyright 2010-2014 LensKit Contributors. See CONTRIBUTORS.md.
* Work on LensKit has been funded by the National Science Foundation under
* grants IIS 05-34939, 08-08692, 08-12148, and 10-17697.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
package org.grouplens.lenskit.eval.metrics.topn;
import it.unimi.dsi.fastutil.longs.*;
import org.grouplens.lenskit.Recommender;
import org.grouplens.lenskit.data.dao.EventDAO;
import org.grouplens.lenskit.data.event.Rating;
import org.grouplens.lenskit.eval.Attributed;
import org.grouplens.lenskit.eval.data.traintest.TTDataSet;
import org.grouplens.lenskit.eval.metrics.AbstractMetric;
import org.grouplens.lenskit.eval.metrics.ResultColumn;
import org.grouplens.lenskit.eval.traintest.TestUser;
import org.grouplens.lenskit.scored.ScoredId;
import org.grouplens.lenskit.util.statistics.MeanAccumulator;
import java.util.List;
/**
* Metric that measures how popular the items in the TopN list are.
* @author GroupLens Research
*/
public class TopNPopularityMetric extends AbstractMetric {
private final String prefix;
private final String suffix;
private final int listSize;
private final ItemSelector candidates;
private final ItemSelector exclude;
public TopNPopularityMetric(String pre, String sfx, int listSize, ItemSelector candidates, ItemSelector exclude) {
super(Result.class, Result.class);
prefix = pre;
suffix = sfx;
this.listSize = listSize;
this.candidates = candidates;
this.exclude = exclude;
}
@Override
protected String getPrefix() {
return prefix;
}
@Override
protected String getSuffix() {
return suffix;
}
/**
* Computes the popularity of a set of ratings as the number of users who have rated an item
* This function is robust in the face of multiple ratings on the same item by the same user.
* @return an immutable map from movie Ids to the number of users who have rated the identified movie.
*/
private Long2IntMap computePop(EventDAO dao) {
Long2ObjectOpenHashMap watchingUsers = new Long2ObjectOpenHashMap();
for (Rating r : dao.streamEvents(Rating.class)) {
long item = r.getItemId();
long user = r.getUserId();
if (! watchingUsers.containsKey(item)) {
watchingUsers.put(item, new LongOpenHashSet());
}
watchingUsers.get(item).add(user);
}
Long2IntMap userCounts = new Long2IntOpenHashMap();
for (long item : watchingUsers.keySet()) {
userCounts.put(item, watchingUsers.get(item).size());
}
return Long2IntMaps.unmodifiable(userCounts);
}
@Override
public Context createContext(Attributed algo, TTDataSet ds, Recommender rec) {
Long2IntMap popularity = computePop(ds.getTrainingDAO());
return new Context(popularity);
}
@Override
public Result doMeasureUser(TestUser user, Context context) {
List recs;
recs = user.getRecommendations(listSize, candidates, exclude);
if (recs == null || recs.isEmpty()) {
return null;
}
double pop = 0;
for (ScoredId s : recs) {
pop += context.popularity.get(s.getId()); // default value should be 0 here.
}
pop = pop / recs.size();
context.mean.add(pop);
return new Result(pop);
}
@Override
protected Result getTypedResults(Context context) {
return new Result(context.mean.getMean());
}
public static class Result {
@ResultColumn("TopN.MeanPopularity")
public final double mean;
public Result(double mu) {
mean = mu;
}
}
public class Context {
final Long2IntMap popularity;
final MeanAccumulator mean = new MeanAccumulator();
public Context(Long2IntMap popularity) {
this.popularity = popularity;
}
}
/**
* @author GroupLens Research
*/
public static class Builder extends TopNMetricBuilder {
@Override
public TopNPopularityMetric build() {
return new TopNPopularityMetric(prefix, suffix, listSize, candidates, exclude);
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy