org.grouplens.lenskit.eval.traintest.FunctionMultiModelMetric Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of lenskit-eval Show documentation
Show all versions of lenskit-eval Show documentation
Facilities for evaluating recommender algorithms.
/*
* LensKit, an open source recommender systems toolkit.
* Copyright 2010-2014 LensKit Contributors. See CONTRIBUTORS.md.
* Work on LensKit has been funded by the National Science Foundation under
* grants IIS 05-34939, 08-08692, 08-12148, and 10-17697.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
package org.grouplens.lenskit.eval.traintest;
import com.google.common.base.Function;
import com.google.common.base.Preconditions;
import com.google.common.collect.Lists;
import org.grouplens.lenskit.Recommender;
import org.grouplens.lenskit.eval.Attributed;
import org.grouplens.lenskit.eval.data.traintest.TTDataSet;
import org.grouplens.lenskit.eval.metrics.Metric;
import org.grouplens.lenskit.util.table.TableLayoutBuilder;
import org.grouplens.lenskit.util.table.writer.CSVWriter;
import org.grouplens.lenskit.util.table.writer.TableWriter;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.io.File;
import java.io.IOException;
import java.util.Collections;
import java.util.List;
/**
* Model metric backed by an arbitrary function that returns multiple rows per algorithmInfo.
*
* @author GroupLens Research
* @since 1.1
*/
public class FunctionMultiModelMetric implements Metric {
private static final Logger logger = LoggerFactory.getLogger(FunctionMultiModelMetric.class);
private final File outputFile;
private final List columnHeaders;
private final Function>> function;
private TableWriter writer;
private ExperimentOutputLayout evalLayout;
public FunctionMultiModelMetric(File file, List columns,
Function>> func,
ExperimentOutputLayout layout) {
outputFile = file;
columnHeaders = Lists.newArrayList(columns);
function = func;
evalLayout = layout;
TableLayoutBuilder builder = TableLayoutBuilder.copy(evalLayout.getCommonLayout());
for (String col: columnHeaders) {
builder.addColumn(col);
}
try {
writer = CSVWriter.open(outputFile, builder.build());
} catch (IOException e) {
throw new RuntimeException("error opening output file", e);
}
}
@Override
public List getColumnLabels() {
return Collections.emptyList();
}
@Override
public List getUserColumnLabels() {
return Collections.emptyList();
}
@Nullable
@Override
public Void createContext(Attributed algorithm, TTDataSet dataSet, Recommender recommender) {
Preconditions.checkState(evalLayout != null, "evaluation not in progress");
logger.info("Measuring algorithm {} on data set {} with metric {}",
algorithm, dataSet, function);
TableWriter w = evalLayout.prefixTable(writer, algorithm, dataSet);
List> measurement = function.apply(recommender);
if (measurement == null) {
logger.warn("Metric {} on algorithm {} for data set {} returned null.",
function, algorithm, dataSet);
return null;
}
logger.debug("got {} rows", measurement.size());
for (List
© 2015 - 2024 Weber Informatics LLC | Privacy Policy