All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.lenskit.mf.funksvd.FunkSVDUpdater Maven / Gradle / Ivy

There is a newer version: 3.0-T5
Show newest version
/*
 * LensKit, an open source recommender systems toolkit.
 * Copyright 2010-2014 LensKit Contributors.  See CONTRIBUTORS.md.
 * Work on LensKit has been funded by the National Science Foundation under
 * grants IIS 05-34939, 08-08692, 08-12148, and 10-17697.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as
 * published by the Free Software Foundation; either version 2.1 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 51
 * Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */
package org.lenskit.mf.funksvd;

import org.lenskit.data.ratings.PreferenceDomain;

/**
 * Encapsulation of the FunkSVD update process.  Using this class takes a two-step process:
 *
 * 
    *
  1. Call {@link #prepare(int, double, double, double, double, double)} to prepare * an update.
  2. *
  3. Call {@link #getItemFeatureUpdate()} and {@link #getUserFeatureUpdate()} to get the * deltas to apply to the item-feature and user-feature values, respectively.
  4. *
* *

The updater can be reused for multiple updates, but cannot be shared between threads. It * is typical to create one updater and reuse it for much of the training process.

* *

The updater also tracks statistics across runs.

* * @since 2.1 * @author GroupLens Research */ public final class FunkSVDUpdater { private final FunkSVDUpdateRule updateRule; private double error; private double userFeatureValue; private double itemFeatureValue; private double sse; private int n; FunkSVDUpdater(FunkSVDUpdateRule rule) { updateRule = rule; } /** * Reset the statistics and counters tracked by this updater. */ public void resetStatistics() { sse = 0; n = 0; } /** * Get the number of updates this updater has prepared since the last reset. * @return The number of updates done. * @see #resetStatistics() */ public int getUpdateCount() { return n; } /** * Get the RMSE of all updates done since the last reset. * @return The root-mean-squared error of the updates since the last reset. */ public double getRMSE() { if (n <= 0) { return Double.NaN; } else { return Math.sqrt(sse / n); } } /** * Prepare the updater for updating the feature values for a particular user/item ID. * * @param feature The feature we are training. * @param rating The rating value. * @param estimate The estimate through the previous feature. * @param uv The user feature value. * @param iv The item feature value. * @param trail The sum of the trailing feature value products. */ public void prepare(int feature, double rating, double estimate, double uv, double iv, double trail) { // Compute prediction double pred = estimate + uv * iv; PreferenceDomain dom = updateRule.getDomain(); if (dom != null) { pred = dom.clampValue(pred); } pred += trail; // Compute the err and store this value error = rating - pred; userFeatureValue = uv; itemFeatureValue = iv; // Update statistics n += 1; sse += error * error; } /** * Get the error from the prepared update. * @return The estimation error in the prepared update. */ public double getError() { return error; } /** * Get the update for the user-feature value. * @return The delta to apply to the user-feature value. */ public double getUserFeatureUpdate() { double delta = error * itemFeatureValue - updateRule.getTrainingRegularization() * userFeatureValue; return delta * updateRule.getLearningRate(); } /** * Get the update for the item-feature value. * @return The delta to apply to the item-feature value. */ public double getItemFeatureUpdate() { double delta = error * userFeatureValue - updateRule.getTrainingRegularization() * itemFeatureValue; return delta * updateRule.getLearningRate(); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy