All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.hipparchus.linear.RectangularCholeskyDecomposition Maven / Gradle / Ivy

There is a newer version: 3.1
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 * This is not the original file distributed by the Apache Software Foundation
 * It has been modified by the Hipparchus project
 */

package org.hipparchus.linear;

import org.hipparchus.exception.LocalizedCoreFormats;
import org.hipparchus.exception.MathIllegalArgumentException;
import org.hipparchus.util.FastMath;

/**
 * Calculates the rectangular Cholesky decomposition of a matrix.
 * 

The rectangular Cholesky decomposition of a real symmetric positive * semidefinite matrix A consists of a rectangular matrix B with the same * number of rows such that: A is almost equal to BBT, depending * on a user-defined tolerance. In a sense, this is the square root of A.

*

The difference with respect to the regular {@link CholeskyDecomposition} * is that rows/columns may be permuted (hence the rectangular shape instead * of the traditional triangular shape) and there is a threshold to ignore * small diagonal elements. This is used for example to generate {@link * org.hipparchus.random.CorrelatedRandomVectorGenerator correlated * random n-dimensions vectors} in a p-dimension subspace (p < n). * In other words, it allows generating random vectors from a covariance * matrix that is only positive semidefinite, and not positive definite.

*

Rectangular Cholesky decomposition is not suited for solving * linear systems, so it does not provide any {@link DecompositionSolver * decomposition solver}.

* * @see MathWorld * @see Wikipedia */ public class RectangularCholeskyDecomposition { /** Permutated Cholesky root of the symmetric positive semidefinite matrix. */ private final RealMatrix root; /** Rank of the symmetric positive semidefinite matrix. */ private int rank; /** * Decompose a symmetric positive semidefinite matrix. *

* Note: this constructor follows the linpack method to detect dependent * columns by proceeding with the Cholesky algorithm until a nonpositive diagonal * element is encountered. * * @see * Analysis of the Cholesky Decomposition of a Semi-definite Matrix * * @param matrix Symmetric positive semidefinite matrix. * @exception MathIllegalArgumentException if the matrix is not * positive semidefinite. */ public RectangularCholeskyDecomposition(RealMatrix matrix) throws MathIllegalArgumentException { this(matrix, 0); } /** * Decompose a symmetric positive semidefinite matrix. * * @param matrix Symmetric positive semidefinite matrix. * @param small Diagonal elements threshold under which columns are * considered to be dependent on previous ones and are discarded. * @exception MathIllegalArgumentException if the matrix is not * positive semidefinite. */ public RectangularCholeskyDecomposition(RealMatrix matrix, double small) throws MathIllegalArgumentException { final int order = matrix.getRowDimension(); final double[][] c = matrix.getData(); final double[][] b = new double[order][order]; int[] index = new int[order]; for (int i = 0; i < order; ++i) { index[i] = i; } int r = 0; for (boolean loop = true; loop;) { // find maximal diagonal element int swapR = r; for (int i = r + 1; i < order; ++i) { int ii = index[i]; int isr = index[swapR]; if (c[ii][ii] > c[isr][isr]) { swapR = i; } } // swap elements if (swapR != r) { final int tmpIndex = index[r]; index[r] = index[swapR]; index[swapR] = tmpIndex; final double[] tmpRow = b[r]; b[r] = b[swapR]; b[swapR] = tmpRow; } // check diagonal element int ir = index[r]; if (c[ir][ir] <= small) { if (r == 0) { throw new MathIllegalArgumentException(LocalizedCoreFormats.NOT_POSITIVE_DEFINITE_MATRIX); } // check remaining diagonal elements for (int i = r; i < order; ++i) { if (c[index[i]][index[i]] < -small) { // there is at least one sufficiently negative diagonal element, // the symmetric positive semidefinite matrix is wrong throw new MathIllegalArgumentException(LocalizedCoreFormats.NOT_POSITIVE_DEFINITE_MATRIX); } } // all remaining diagonal elements are close to zero, we consider we have // found the rank of the symmetric positive semidefinite matrix loop = false; } else { // transform the matrix final double sqrt = FastMath.sqrt(c[ir][ir]); b[r][r] = sqrt; final double inverse = 1 / sqrt; final double inverse2 = 1 / c[ir][ir]; for (int i = r + 1; i < order; ++i) { final int ii = index[i]; final double e = inverse * c[ii][ir]; b[i][r] = e; c[ii][ii] -= c[ii][ir] * c[ii][ir] * inverse2; for (int j = r + 1; j < i; ++j) { final int ij = index[j]; final double f = c[ii][ij] - e * b[j][r]; c[ii][ij] = f; c[ij][ii] = f; } } // prepare next iteration loop = ++r < order; } } // build the root matrix rank = r; root = MatrixUtils.createRealMatrix(order, r); for (int i = 0; i < order; ++i) { for (int j = 0; j < r; ++j) { root.setEntry(index[i], j, b[i][j]); } } } /** Get the root of the covariance matrix. * The root is the rectangular matrix B such that * the covariance matrix is equal to B.BT * @return root of the square matrix * @see #getRank() */ public RealMatrix getRootMatrix() { return root; } /** Get the rank of the symmetric positive semidefinite matrix. * The r is the number of independent rows in the symmetric positive semidefinite * matrix, it is also the number of columns of the rectangular * matrix of the decomposition. * @return r of the square matrix. * @see #getRootMatrix() */ public int getRank() { return rank; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy